

1

ARCADIA
QUESTIONS & ANSWERS

Real life answers to real projects questions

Jean-Luc Voirin

©Thales 2023

2

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Table of Contents
1 Scope of this document .. 4

2 Arcadia Reference Documents... 5

3 Arcadia core Perspectives: Why and How ... 8

3.1 What are the objectives of the Operational Analysis? .. 8

3.2 What approach to follow for an Operational Analysis? .. 9

3.3 How to use the Operational Analysis for system needs analysis? 12

3.4 How to verify the validity of your system/user allocation? 13

3.5 Logical Architecture or Physical Architecture, do you need both ? 13

4 Arcadia language specifics .. 16

4.1 What is a Capability? ... 16

4.2 Leaf functions, parent functions? .. 17

4.3 Functional exchanges only on leaf functions? ... 17

4.4 How to distinguish Dataflow from its usage contexts?... 18

4.5 How to use Functional Chains? ... 19

4.6 Should I use a Scenario or a Functional Chain? .. 20

4.7 Adding Sequence Flows in Data Flows or not? ... 20

4.8 How to specify values or conditions for exchanged data? 22

4.9 How to represent a request with reply in the functional flow? 23

4.10 How many Input and Output ports for exchanges? ... 24

4.11 Can we allocate Functions to Implementation Components? 25

4.12 Can Behavioral Components carry Physical Links? .. 25

4.13 What benefits does the Physical Architecture Representation bring? 26

4.14 What is an Interface? How to use it? .. 28

5 Model building hints ... 29

5.1 What are the frequent mistakes? How to avoid them? .. 29

5.2 Why and how to use the Functional Analysis? .. 31

5.3 How to define and justify Interfaces between Components?................................ 33

5.4 Should we use textual requirements or models? ... 34

5.5 Which requirements can be model-based? ... 36

5.6 Why use model requirements? ... 37

5.7 Where to link textual requirements with the model? ... 39

5.8 Does the system appear in the operational analysis or not? 40

3

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.9 Operational Analysis: Where to stop? .. 42

5.10 What’s the difference between Modes and States? ... 44

5.11 Should operators be in the system? .. 45

5.12 What similarities and differences between System and Actors? 46

5.13 How do System and Actors interact and share resources? 46

5.14 How to model communication components? .. 48

5.15 How to engineer and model communication layers? ... 48

5.16 How to model a communication protocol? ... 51

5.17 How to model the environment and physical sensors? .. 51

6 Engineering Lifecycle Considerations ... 54

6.1 In what order to carry out the modeling activities? ... 54

6.2 How to iterate, from the OA to the PA, to develop the solution? 55

6.3 How to use the OA to describe the solution lifecycle? ... 56

6.4 How to confront an existing system with a new need? .. 57

6.5 When to stop the design of one level?... 58

6.6 How to collaborate between System and Sub-systems teams? 60

6.7 Can we merge two engineering levels in the same model? 60

6.8 How to manage the transition from System to Software? 62

6.9 Can we use Arcadia to work on Software? ... 62

6.10 What kind of document can be produced from the models? 63

6.11 How to use models to communicate with the client? .. 64

6.12 Model-based Testing (MBT)? .. 64

7 Arcadia comparing to other approaches ... 67

7.1 Arcadia Vs Architecture Frameworks? .. 67

7.2 Arcadia and ISO 15288-2015? .. 68

7.3 Why did Thales embark on the development of a new method and tool? 70

7.4 Summary: What is Arcadia’s value-added compared to existing modeling languages
and tools? .. 73

4

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

1 Scope of this document
ARCADIA is a tooled method devoted to systems & architecture engineering, supported by
Capella modelling tool.

It describes the detailed reasoning to

 understand the real customer need,
 define and share the product architecture among all engineering stakeholders,
 early validate its design and justify it,
 ease and master Integration, Validation, Verification, Qualification (IVVQ).

It can be applied to complex systems, equipment, software or hardware architecture
definition, especially those dealing with strong constraints to be reconciled (cost,
performance, safety, security, reuse, consumption, weight…).

It is intended to be used by most stakeholders in system/product/software or hardware
definition and IVVQ as their common engineering reference and collaboration support.

ARCADIA stands for ARChitecture Analysis and Design Integrated Approach.

 This document collects questions raised by engineering teams of various domains and
organisations, about to deploy Arcadia, or already deploying it and needing some support or
clarification on the method and its use.
The answers given in the document are those that were proposed to engineering teams and
applied by them in a coaching context, with little or no filtering. So they may not be relevant
to any context or domain, neither are they accessible to any engineer, but at least they
faithfully reflect real life concerns and the way they were addressed.

Warning:
These questions and answers are by no means self-sufficient to understand Arcadia and
master its deployment. The reader is strongly recommended to read Arcadia reference
documents before entering this one.

5

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

2 Arcadia Reference Documents
An in-depth introduction and description of Arcadia, with explanations on the method, on the
language, illustrated by detailed examples of application, can be found in the Arcadia
reference book:

Jean-Luc Voirin, ‘Model-based System and Architecture Engineering with the Arcadia
Method’, ISTE Press, London & Elsevier, Oxford, 2017

A presentation of Arcadia main principles and concepts can be found in the following online
documents, including this one:

 Arcadia Engineering Landscape: an introduction to Engineering as supported by

Arcadia

 Arcadia User Guide: a first level description of Arcadia approach and main

engineering Tasks

 Arcadia Reference - Activities: an in-depth description of Arcadia tasks and activities

 Arcadia Reference - Data Model: data created and exploited by these activities

 Arcadia Reference - Capabilities: main processes supporting engineering

 Arcadia Language - MetaModel: a more formal description of Arcadia language

concepts

 Arcadia Q&A: real life questions and answers on deploying Arcadia

See table ‘Summary of reference Documents Contents’ next page.

For easier navigation capabilities (including in diagrams, between activities and data, etc.), a
web version can be browsed here.

Advanced practitioners in modelling and Arcadia can also access the Arcadia-compliant
Capella model of Arcadia, from which this material is automatically extracted, here.

6

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

7

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

8

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

3 Arcadia core Perspectives: Why and
How

3.1 What are the objectives of the Operational
Analysis?

Operational analysis is an essential contribution to the development of input data for defining
the solution. It requires temporarily setting aside expectations about the solution itself, in
favor of understanding users, their goals, and their needs, free from preconceptions about
the solution.

However, its most important use is to stimulate a deeper understanding and definition of the
need beyond the customer's requirements alone, achieved through a critical analysis of the
formalization represented by the operational analysis.

Much of the added value of operational analysis lies in the "analysis" aspect rather than just
capture or formalization, as it stimulates different perspectives, opportunities, constraints,
and risks that might not otherwise have been taken into account. It can lead to proposing
new capabilities that the system could offer, new services expected from it, as well as
operational contexts and previously unforeseen risk situations.

For example, in many operational analyses, the first-level description is often not very
different across missions. This is normal, but to be useful, it is necessary either to refine it to
reveal differences at a finer level, which will feed the reflection (not recommended a priori),
or to ask the question: "where are the differences, on which entities and activities do they
occur, what constraints do they impose?" The difference may lie in constraints, non-
functional properties, quantitative elements of scenarios, nature of information and time
scales, etc., which will then be essential for the performance of the solution in real
operational context.

Furthermore, the behavior of cooperative entities is often well described in operational
analysis (although often generic, see above), but the behavior of other actors (threats,
objects of interest, or non-cooperative actors in particular) is often not. However, there is a
good chance that many of the constraints and expectations on performance come from the
specificities of their behavior, their temporal evolution, their own goals and capabilities, etc.
All of this must be captured and analyzed within the framework of operational analysis.

It is then essential, of course, to compare the analysis of the system's needs (and beyond)
with this analysis and to evolve one or the other if necessary.

9

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

3.2 What approach to follow for an
Operational Analysis?

A good way to start is to forget about modeling and instead focus on "telling a story" that
describes the needs, expectations, and daily lives of end users and stakeholders.
This can be done using existing documents, observing stakeholders using current systems
and means, or conducting interviews ("what is your job? Tell me about a typical day or
mission. What makes your activities easier? What complicates or jeopardizes them?..."). At
this stage, the formalization is limited to writing free text and checking that they are
representative of the need.

 Establish the dimensioning situations and scenarios, the required capabilities to
detect/face them and their dependencies, the induced constraints that will later
influence the system

 Put these capabilities into a time perspective (capability roadmap)

 Define the operational doctrines, concepts, and roles of the actors, associated
operational procedures

 Evaluate new situations, along with gaps and discrepancies in the capabilities of the
existing system relatively to the goals to be achieved

 Identify opportunities that will then feed the definition of solution alternatives in
response to this need

 Define the conditions for the future operational evaluation of the solution to be
developed: expected properties, constraints, operational scenarios, etc.

Secondly, identify the key words in the previous material and determine for each how it
could be represented in the operational analysis model (if relevant):

- missions and capabilities,

- operational entities/actors and their links,

- activities carried out by these entities and interactions between them,

- operational information and domain model,

- operational processes, temporal scenarios,

- mission phases, operational modes,

- engagement rules, etc.,

- programmatic vision (capability increments...).

10

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Finally, build an initial model on this basis and validate/extend it with stakeholders.

Here are the types of questions that can be asked during the development of the OA, which
can either lead to completing it or deriving elements for the rest of the architectural
definition (not exhaustive!):

 For each major activity and stakeholder (entity or actor), what makes it different
from others? What makes it effective, what hinders it? What does it need to improve
its effectiveness? What are the opportunities to provide other outputs, to enrich the
service rendered - possibly with additional inputs?

 For each activity, who else is likely to carry it out (entity, actor, other activity)?

 For each interaction between activities (and entities), what could disrupt it? Under
what conditions does it occur? Who else besides the identified destinations could
benefit from it? Who else besides the identified sources could provide it, or provide
complementary elements? And would that be desirable?

 What disruptions are likely to occur in the activity or its inputs? What unintended
uses could be made of its outputs?

 What are the conditions of overlap or exclusion with other desired, imposed, and
suffered activities? What is the link with any operational modes and states of entities?

 What data or information, activities, actors or entities, interactions, etc., are most
operationally important, according to the main points of view (value for the
operational mission, criticality from a safety and security perspective...)?

 What representative operational scenarios and processes describe the desired use of
operational activities, interactions, etc., to contribute to associated missions and
capabilities ("sunny days scenarios"), and how do they fit into time (timing of the
mission, operations, expected system lifecycle, etc.)?

 What unwanted operational scenarios and processes should be avoided ("rainy days
scenarios")?

 What constraints apply on each element (especially non-functional ones:
performance, security, safety, operational importance, value...)?

 What uncertainties, sequence disruptions, contextual changes, undesired states,
degraded modes are likely to occur, and what consequences will they have on the
previous elements?

 How will the needs, constraints, contexts, situations, processes, etc., evolve over
time?

11

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Important note: there are many other analysis and creativity approaches, such as CD&E,
design thinking, approaches like C-K, and methodological approaches supporting enterprise
architectures such as NAF V4, which would be useful and which the analysis of OA does not
replace (and which I also recommend considering). But on the one hand, they are
complementary and do not cover the same needs or the same scope of reflection as Arcadia,
and on the other hand, their data should mutually nourish each other with that of OA.

12

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

3.3 How to use the Operational Analysis for
system needs analysis?

Based on operational analysis (OA), system needs analysis (SA) will define the contribution
of the solution (referred to as the "system" hereafter) in terms of scope and expectations,
particularly functional expectations. In other words, what services should the system provide
to users to contribute to operational capabilities?

When conducting system needs analysis from operational analysis, the following questions
should be asked:

 "Among the operational capabilities, which ones concern the system and/or its
operators/users?"

 "How can the system contribute to each operational activity (from OA)? What
services (or functions) can be derived from it, whether they are expected from the
system, users or operators, or entrusted to other external systems?" This may also
generate new features to offer or different system contribution alternatives.

 "For each interaction between operational activities, should/can the system be
involved? In what way (displayed to the operator or treated internally...)?" This can
also generate new services or expected functions.

 "For each function that is expected from the system, how can each operational
activity or interaction benefit from it? How can it constrain or influence this function?"

 The same applies to operational processes and scenarios, states and modes... "How
should the system assist users in each operational process, scenario, in each of their
states and modes of operation? What constraints coming from these elements apply
to the services it must provide?"
Study the conditions of overlap of several scenarios, states and modes, and how this
overlap can alter them: new activities, need for parallel activities, separation of an
activity into several... and associated functions.

The separation between OA and SA, in addition to the benefits mentioned above, also allows
the first major choices of engineering to be formalized and analyzed, particularly in the case
of a new product or product line.

In these situations, several ways of meeting the same operational need may appear:
different distributions of contributions between the system and its environment (use of other
systems, for example), more or less advanced automation entrusted to the system, etc.

Engineering is therefore required to make an initial choice, not of design, but of delimiting
the need allocated to the system.

13

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

It may then be wise to explicitly capture the different alternative terms, either through
variability in the same SA, or in several SA candidates to be evaluated to select the most
appropriate one for the context.

3.4 How to verify the validity of your
system/user allocation?

A good definition of the human/system interaction is important, particularly regarding the
users or operators of the system, both for communicating with the client and for preparing
for integration, verification, and validation (IVV). To achieve this, you can ask yourself the
following questions:

 Do the exchanges between operator/user and system accurately translate all the
actions the user must take towards the system to carry out their operational
activities?

 For each user activity that uses expected system elements, does it provide the
feedback the user needs?

 Does the naming of system and user functions accurately reflect the part that each of
them takes on?

 Are there multiple system implementation contexts (e.g. novice or expert user; or
multiple levels of automation...)?

 In which cases does the user initiate the interaction, and in which does the system
initiate it (e.g. alert, end-of-task notification...)? What information should the system
present in the latter case?

 Between two interactions with the system, does the user need to make a decision
that will condition the rest (in which case, it may be good to display it as an
exchange between two operator functions, to make the Functional Chains or
scenarios more meaningful)?

 Can the user be interrupted and resume their activities later, and if so, are there any
constraints? In this kind of case, it would be preferable to divide the operator activity
into several functions...

 Is the level of description of user activities and interactions necessary and sufficient
to define and execute the verification/validation procedures?

3.5 Logical Architecture or Physical
Architecture, do you need both ?

14

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

In some (mainly software oriented) modelling approaches, what is called a "logical"
architecture is a definition of (software) components and assembly rules, while "physical"
architecture is a description of one or more deployments of instances of these components,
on execution nodes and communication means.

This is not the case in Arcadia: the major reason for logical architecture (LA) is to manage
complexity, by defining first a notional view of components, without taking care of design
details, implementation constraints, and technological concerns - provided that these issues
do not influence architectural breakdown at this level of detail.

By this way, major orientations of architecture can be defined and shared, while hiding part
of the final complexity of the design, and without dependency on technologies. As an
example, some domains or product lines have one single, common logical architecture for
several projects or product variations.

In fact, logical architecture should have been named 'notional architecture', or 'conceptual
architecture', but we had to meet existing legacy denominations.

Physical architecture (PA) describes the final solution extensively: functional behavior,
behavioral components (incl. software) realizing this functional contents, and resource
implementation components (incl. execution nodes).

Physical Architecture provides details what have not been taken into account at LA level, in
order to give a description of the solution ready to sub-contract, purchase or develop, and to
integrate. So all configuration items, software components, hardware devices... should be
defined here (or later), but not before.

For this reason, maybe physical architecture would be better named as ‘finalized
architecture’…

As you can imagine, then, for one logical component, we can often find several physical
components, relation between logical and physical levels being one to many. Similarly,
functional description of component is notional in LA, and detailled enough in PA so as to
sub-contract it.

Consequently, for example, it is much easier to start defining an IVVQ strategy or a product
variability definition, on the limited number of functions and components mentioned in LA, to
quickly evaluate alternatives and select best ones. Once this is done, the former definition
can be checked, refined and applied to the fully-detailed description of PA.

For the same reason, once they have finalized their physical architecture, many people feel
the need to synthetize it in a more manageable and shareable representation, grouping
some components and functions, hiding others, etc. Which is simply building a posteriori
their initially lacking logical architecture!

15

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

However, if really the level of complexity does not require two functional levels for the
description of the solution, then the following recommendations should be followed:

 If an implementation view is not needed, then an LA is sufficient without a PA.

 If an implementation view is needed, then it would be better to put the detailed
functional description in PA to have a regular model (and in Capella, the viewpoints,
query engines, and other semantic browsers will thank you).

16

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

4 Arcadia language specifics
4.1 What is a Capability?
A capability is the ability of an organization (incl. Actors & Entities) or a system to provide a
service that supports the achievement of high-level operational goals. These goals are called
missions.

A mission uses different capabilities to be performed. A capability is described by a set of
scenarios, and functional chains (or operational processes in operational analysis),
each describing a use case for the capability.

In Arcadia, there are operational missions and capabilities in OA (Operational Analysis), as
well as system missions and capabilities (including users) in SA, LA, and PA (System Need
Analysis, Logical, Physical Architecture). An expected operational capability of an actor
should, if the system contributes to it, be derived (via traceability links) to one or more
system capabilities in SA.
In Capella, there should also be missions in both OA and SA, as provided for by Arcadia.

To understand what the concept of mission and capability covers, we can use the analogy of
an employee in a company:

 The company assigns a mission to the employee (often summarized in the job title).

 The company ensures that the employee has the required capabilities to fulfill this
mission (their skills, as listed on their CV).

 The employee performs daily activities (analogous to functions or operational
activities), which are carried out by applying processes and procedures (functional
chains or scenarios).

 Just as a (hiring) job interview validates the required skills, IVV will verify the
capabilities of the solution.

 We can see that capabilities do not represent everything an engineer can do in their
daily work; this falls under operational activities or functions, depending on whether
we model in OA or SA, LA, PA.

 Therefore, Capabilities have more "added value" than activities or functions, and are
directly related to a goal. This is why there are generally a limited number of
capabilities in the model, and why they structure IVV, i.e. the adequacy of the system
to the client/user's needs.

17

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

4.2 Leaf functions, parent functions?
The expected behavior of the system or a component is described in Arcadia by the
functional definition constituted by the dataflow (functions, functional exchanges, functional
chains and scenarios, modes and states, exchanged data).
A function is fully described by its textual definition (and/or the requirements associated with
it), its possible properties or attributes and constraints, the data it needs as inputs and those
it is responsible for providing as outputs, as well as its implications in the functional chains
and scenarios that involve it: functional exchanges involved, definition (textual) of the
function's contribution in the chain or scenario ('involvements' in Capella).

This functional definition must be made at the finest level of detail necessary for
understanding and verifying the expected behavior. It is the functions at this level of detail
(called "leaf functions") that are allocated on the components and that define their behavior.

For convenience, both to offer a more accessible level of synthesis and representation, and
to structure the presentation of the functional analysis, these leaf functions can be grouped
into more synthetic parent functions. But these parent functions have only a documentary
role (by categorizing the leaf functions): the reference remains the leaf functions. For
Arcadia, they alone carry the definition and behavioral analysis of the architecture.
For example, a functional chain that would pass through a parent function itself instead of its
leaf functions would leave a major ambiguity in the model regarding the role of each leaf
function and its expectations (data to be produced, contribution to the chain, etc.).

Therefore, in a finalized state of the modeling, all leaf functions should carry the functional
exchanges involved and ideally be each involved (as well as its exchanges) in at least one
functional chain or scenario.

4.3 Functional exchanges only on leaf
functions?

Most modeling tools offer (mainly) a top-down construction approach based on
decomposition (of components, functions), and the delegation of links connecting the
previous elements at each level of decomposition. For example, first-level functions will be
defined, connected by exchanges, then sub-functions will be inserted "into" each function,
and a delegation link will be placed between a sub-function and the end of each exchange
connecting the mother function to its sister functions.

In addition to the added complexity if a sub-function needs to be moved from one level to
another, or if exchanges need to be added from the sub-functions, experience shows that
this approach is neither the most natural nor the most common. For example, when
modeling textual requirements, each of these requirements will result in the creation or
enrichment of leaf functions, and exchanges will naturally occur between these leaf

18

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

functions. One may then want to group these leaf functions into parent functions, but
without having to go back and recreate all the exchanges to link them to the first-level
functions with delegation links at each level. This is rather a bottom-up approach, and most
often a combination of both (middle-out) is used.

This is why Arcadia recommends that, in a finalized state of modeling, only leaf functions
carry exchanges, directly between them and without delegation. Thus, in a bottom-up
approach, it will suffice to group leaf functions into a parent function at as many levels as
desired; in a top-down approach, it will suffice to create sub-functions and then move each
exchange from the mother to the sub-function that will take care of it.

Arcadia and Capella then propose automatic synthesis functions, only in the representation,
to display diagrams in which the exchanges of the sub-functions are reported on the parent
function if it is the only one visible. Similarly, exchanges can be grouped into hierarchical
categories, which allow a simplified representation of several exchanges of the same
category into a synthetic pseudo-exchange*.

* Capella supports simple (and multiple) exchange categories, but does not yet support hierarchical categories.

4.4 How to distinguish Dataflow from its usage
contexts?

The dataflow describes all the inputs required by each function and its potential outputs.
However, these outputs and inputs may not be constantly solicited or used in all the system
usage contexts, as defined in particular by its capabilities.

Similarly, the functional dependencies in the dataflow (functional exchanges) indicate that a
function may receive its inputs from several other functions that are capable of producing
them, but not necessarily all at the same time.

Therefore, the dataflow describes all the possible exchanges between functions, which must
not be questioned in the system operation (that's why it's immutable and cannot be
modified).

Furthermore, the system is subject to variable usage conditions (or use cases), not all of
which may require the full range of production capabilities and exchanges between all
functions.

Thus, in one of these use cases (referred to as a context, often described in a capability),
only a subset of the dataflow is valid and used. This is what is described by the functional
chains and scenarios associated with the capability: which part of the dataflow is used in a
given context, and how this subset of the dataflow is implemented. And that's why functional
chains and scenarios are described separately from the dataflow itself, and depend on the
context (capability) in which they are exercised.

19

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

4.5 How to use Functional Chains?
In Arcadia, initially, a functional chain is intended to carry non-functional constraints,
typically end-to-end, in a given context (capability):

A functional chain is a means to describe one specific path among all possible paths
traversing the dataflow,

 either to describe an expected behavior of the system in a given context,

 or in order to express some non-functional properties along this functional path
(latency, criticality, confidentiality, redundancy…).

In order to avoid any ambiguity, especially when allocating non-functional properties to a
functional chain (latency, criticality, confidentiality level…), some rules should be defined and
respected to precise the meaning of a functional chain contents.

As an example, let's consider the case of a latency that the functional chain must respect
end-to-end:

 If it is a question of expressing a need (specification) for a delay between a source
event and a consequence, then a ‘1 start - 1 end’ rule is sufficient and should be
applied, otherwise there is ambiguity.

 If it is a question of expressing the need for multiple consequences or multiple source
events, then the interpretation rule of first or last arrival, etc. must be added (e.g.
latency is specified between the first of the inputs, and the output, or the last of the
outputs, or the first…).

 If we want to express a latency holding property in these situations as a result of the
design, then it must be true regardless of the intermediate inputs;
otherwise, if the actual latency depends on additional inputs, this must be specified,
but FCs do not have the required expressiveness for the temporal axis, loops, etc., so
in this case a scenario, a constraint, text, or a dedicated viewpoint should be used for
this expression.

 If we want to calculate latency by analyzing the model, either we use the simple
cases mentioned above (‘1I/1O’ or ‘nI/1O’ or ‘1I/nO’ + conventions), or we must
define the behavior of each function in addition (output/input dependencies,
synchronizations between them, etc.), for example in the form of an extension – and
the associated conventions and interpretation rules (model of computation?) must be
defined.

Obviously, I would recommend the simplest solution whenever there is no counter-indication
to do so.

20

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Note that this may require characterizing/classifying functional chains according to their uses
and the associated conventions for each.

4.6 Should I use a Scenario or a Functional
Chain?

Functional Chains Vs Scenarios:

Both can and probably should be used. Functional Chains (FC) are more appropriate to
describing a “path” in the dataflow, either to better understand the dataflow itself, or to
specify (often non-functional) constraints such as latency expectations, criticality for safety
reasons (e.g. associated to a feared event)…

For time-related details, scenarios (SC) are better adapted, but they hide the overall context
that dataflow describes.

When FC become complex (especially with several entries and outputs), then understanding
their behavior may become tricky, and scenarios could be easier to understand: a rule of
thumb could be “if you need to show how the FC behaves, by using your mouse or hands on
a diagram, then consider using scenarios.”

Although it is true that scenarios and functional chains are two facets of the same concept,
each represents it for a different purpose:

 FC: we see its context and the other available paths within a dataflow; it is rather
intended to carry non-functional constraints of the "end-to-end" type;

 SC: highlights the chronology, which is sometimes implicit or ambiguous in FC; can
be defined at any level and be partial (i.e. "omit" parts of the FC)."

4.7 Adding Sequence Flows in Data Flows or
not?

Data flows are there to show dependencies between functions (data required for operation,
data produced), especially in order to build and justify the resulting interfaces. So it is indeed
"real" exchanges that must be considered and not just pure control without any underlying
"concrete" exchange.

I think that trying to transform Arcadia data flows into activity diagrams (AcD) or EFFBD
would be a mistake: they do reflect the essential initial objective of expressing the need and
orienting the solution (architecture):

 express the "contract" or "operating instructions" of each function (what it needs to
operate and what it can provide),

21

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 express the dependency constraints between functions (what F2 needs can be
provided by F1, or F3),

 and do so globally (not locally to a diagram, as in an AcD or EFFBD): the function is
characterized by the sum of all its dependencies expressed in all the diagrams, and
these must be coherent (which is visible and done through the notion of function
ports).

This contract or "user manual" of a function may include, as input dependencies, "activation
conditions" indicating that the function can only be executed upon explicit demand: the
characterization of exchange items as events can, for example, fulfill this purpose. Therefore,
a functional exchange can also be activating, for example.

But this is absolutely not a sequencing link in the EFFBD or AcD meaning, a link that simply
translates a precedence or execution anteriority; by the way, this often appears unnecessary
or even harmful to impose while describing the need or orienting a solution, as it would be
an over-specification issue, risking freezing constraints that do not need to be.

Let's take an example:

I can chain the oil change of Mr. Dupont's car after the changing of the coolant when it
arrives at my garage because his engine is hot. As a result, I tend to put sequence flows
between these two functions in this order.

But for Mr. Durand, who dropped off his car at the same time, his engine is cold when I take
care of it after Mr. Dupont's, so I will first change the coolant before doing the oil change.
So, pure sequence flows are "contextual" and do not reflect an "intangible" dependence
between functions.

Moreover, if we look at the change of the coolant alone, we can hardly see what it would
need as input from the oil change. On the other hand, we have overlooked (perhaps by
focusing a little too much on control) an essential input, which is the engine temperature,
and also the need for a function to control it, or even to cool down/heat up the engine
beforehand…

Let us remember that Arcadia was designed for the description and verification of
architectures, and not for directly executable processes. As a result, there are different
needs and also limits to be put in place: for example, if we were to put a pure sequence link
(without any data exchange) between two functions, and each one was allocated to a
component located on a different processor, we would introduce an inconsistency in the
definition of the architecture and interfaces: without "physical" communication between the
two components, there is no way to impose the order of precedence described in this way.

22

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

However, it may be necessary to express - separately - the aspects of 'sequence in a given
context'; the Arcadia functional chains and scenarios are there to express this aspect,
without polluting the dataflow, by separating the concepts well. Pure sequencing information
can be added here if needed.

A loop with multiple iterations can be represented, for example, in a scenario (sequence
diagram), and even a pure sequence link can be used in a functional chain or operational
process (being aware of the risk of inconsistency between sequence links and real interfaces,
mentioned above).

Similarly, if necessary, a sequencing function that commands those to be chained (involving
an exchange with each of them, of the activation item type) and one or more scenarios that
express the behavior of this function in different contexts can be added, thus reflecting the
required activation order in each context.

4.8 How to specify values or conditions for
exchanged data?

Reminder: Arcadia separately defines the nature (or type) of data that can be exchanged
(between functions or between behavioral components) and the use that is made of them.

The data model describes a piece of data independently of any use: its composition (its
attributes), its relationships, possibly non-functional properties such as the level of
confidentiality for example (via associated properties or constraints).

The content of each exchange is described by the concept of Exchange Item, which groups
(and references) several data to be exchanged as a whole, simultaneously and coherently
with each other (for example, the three geographical coordinates and the velocity vector of a
mobile).

Each exchange carrying an exchange item references it in turn in the functional dataflow
(several exchanges carrying the same EI may reference it). But so far, only the nature of the
exchanged data has been described, which details the dependency between the functions of
the dataflow.

Most often, the need to specify that a data must take a particular value arises to describe
the expected behavior in a given context, i.e. in a reference to an exchange of a scenario or
a functional chain. In this case, it is the reference to the exchange mentioned by the
functional chain or the scenario that will specify the value taken by each data mentioned in
the EI*.

Another need also arises when it is necessary to describe a conditional behavior.
This is the case for a 'control node' in a functional chain: the condition on the data is
expressed on each 'sequence link' leaving the control node.

23

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

This is also the case for a 'control functional sequence' in a scenario: the condition on the
data is expressed on each control functional sequence**.

* This reference is implemented, in Capella, in the form of a 'functional exchange involvement' for a functional
chain, or a 'sequence message' for a scenario; the description of the value on the data can be defined in the
'exchange context'.

** In Capella, the description of the value on the data can be defined in the 'guard' of the 'operand' grouping the
exchanges concerned.

4.9 How to represent a request with reply in
the functional flow?

Let's imagine that we have one or more clients requesting data (or other information) from a
server. At the functional level, we will have a "provide..." function allocated to the server
component and a "request..." function allocated to the client component.

At the SA level, we can often limit ourselves to defining a single functional exchange from
"provide" to "request" to represent the dependency between the functions, and nothing
more.

In LA (and possibly in PA), the natural and most logical rule would be to create two
functional exchanges:

 One with the request (e.g., the reference to the data) from the "request" function to
the "provide" function

 The other with the requested data from "provide" to "request"

This ensures the readability of scenarios and functional chains, and characterizes the
definition of inputs and outputs of each function.

These two exchanges and the associated exchange items (EI) could then be translated into a
single behavioral exchange between the client and server (with a convention to be defined,
such as the request being directed from client to server, which is consistent with scenario
sequence messages and returns). The EI of the component would have an IN parameter, the
reference to the data, and an OUT parameter, the data itself, and would ideally be
connected to the EI of the functional exchanges.

If we want to save modeling effort and use only one functional exchange, we can use the IN
and OUT of the EI to represent exchanges in both directions, with the following precautions
(in this case, the convention must be described precisely as it is subject to interpretation):

 Either the functional exchange starts from the "request" function to "provide" to
represent a query, and the EI has an IN "request parameters" and an OUT "request
result"; this is consistent with the design & development view, as a message or
request sent from the requester to the provider; this is what we would like to see on
a scenario, with a sequence message and a return.

24

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Or, in the same situation, the exchange starts from "provide" because it is the
direction of data flow, but the convention needs to be defined and seems less
natural.

 Or we can use two exchanges to ensure the consistency of functional chains.

4.10 How many Input and Output ports for
exchanges?

In the Arcadia method, not only is it allowed to have multiple exchanges exiting from the
same port, but it is even recommended, and even essential, in certain cases, and not just to
simplify the work of the modeler (although it does contribute to this):

By definition of a function, output ports express what it is capable of producing,
independently of its uses (and thus of the number of uses).

For example, a GPS localization function is capable of providing a position. This position can,
depending on the case, be used by one, two, 10... other functions, and this is not the
concerns of the localization function. It is out of the question to define as many output ports
as there are potential users, because that would mean that its definition would depend on
the number of its users and would have to be modified every time a new one arrives...

Therefore, in this case, it has one output port, and only one. Each use of this position will
result in a functional exchange between this output port and a port of the function that
needs it.

Note that the remark also applies to input ports: they indicate what inputs the function
needs to work; even if a function can receive data from multiple sources, if it processes them
indiscriminately, then only one input port should be defined, which receives exchanges from
various sources.

Linking several exchanges to a port means that they have no a priori relationship with each
other: they are likely to occur at any time, independently of each other (such as requests
from multiple clients to a server, for example, or sending emails by a server to multiple
recipients), and the data transmitted a priori only share a common type (defined in the data
model and the relevant exchange item), but they may be different instances.

On the other hand, to indicate that a position calculation function must combine a position
from a GPS and another position received from an inertial unit, for example, this function will
have two input ports (one for each source) carrying the same exchange item, which will
group and describe the coordinates of the position.

If additional constraints are to be specified, such as simultaneous distribution of the same
data to multiple recipients, or selective sending..., then dedicated functions for this purpose

25

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

(split, duplicate...) are used. And if the same output is to be provided with different quality
of service (e.g., a position accurate to within 10 meters every 10 seconds and another
accurate to within 100 meters every second), two distinct ports will be defined, each with a
constraint or a requirement on the quality of service.

4.11 Can we allocate Functions to
Implementation Components?

Arcadia does not provide for the allocation of functions to implementation components (IC),
but only to behavioral components (BC).

It's not so much the allocation of functions to ICs that is problematic, but rather its
consequences for exchanges: what happens, for example, if two functions communicate, one
on an IC and the other on a BC? Through which ports? What is the concrete physical
meaning of this?

Likewise, this makes the meta-model more complex (should functional exchanges be
allocated to physical links?), as well as the exploitation of the model by analysis views
(safety, security, RAMT, etc.).

In fact, in a number of cases, it may be more appropriate to ask why: for example, if power
supply functions are placed in an IC for an electronic system-level model, is it because they
need to interact with processing functions? If so, there is probably a behavioral component
to define to manage them, interaction "protocols" to define (at the level of exchanges and
behavioral components), and routing of these exchanges through physical links, etc.; placing
the 'power supply' function on an IC would not solve all of this. And is it really useful at this
engineering level? It all depends on how it is used; if the main reason is "documentary" (to
remember the need for such a function in later development), attaching a constraint or
requirement on the component concerned, qualifying them appropriately (voltages, currents,
loads, etc.), would probably be simpler and more useful.

4.12 Can Behavioral Components carry
Physical Links?

« In physical architecture, a Behavioral Component (BC) could be a hardware component. In
this case, why can't we create Physical Links between BCs? With Capella, I'm forced to
artificially create 2 BCs. »

 « A Behavioral Component could be a hardware component. » Yes, in the sense that a
functionality can be realized by a hardware component (e.g. generating a 28V power supply,
managing memory – by a MMU...). This component is therefore a behavioral component.

However, even in this case, it is necessary to distinguish between the outputs of the
functionality (electrical energy, memory segment addresses...) and the means of conveying

26

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

them (cables or backplane, address bus...). It is therefore important to distinguish behavioral
exchanges from physical links, and to be able to allocate the former to the latter.

Similarly, for components, the interest of distinguishing behavioral components from
implementation components lies notably in different non-functional properties: for example,
if I want to allocate software components to execution resources, I need to separately
specify the resources required by each software component (BC), and the resources offered
by each implementation component (IC): computing power, memory, etc., in order to
compare them. And I may also want to define different ways of allocating the same BC to
different ICs. To achieve all this, it is therefore necessary to have the two concepts
separated.

Of course, simplifications are always possible, but it is necessary to make sure that this will
not cause other problems, especially for the exploitation of the model by analysis viewpoints
(safety, security, RAMT, etc.). It was therefore preferred to systematically create an IC in
these situations, which sometimes does require "putting an IC around a BC," but makes the
model more regular and easier to exploit.

« If my job is 'power supplies', then a transformer that takes 220V and transforms it into 12V
is behavioral, and the physical links are on these components. I don't want to create an
Implementation Component (IC or Node) for nothing and have a Behavior Component
inside. What would you do for my example? »

I would distinguish:

 a "voltage converter" BC that receives and provides an electrical voltage (AC or DC,
to be specified) through behavioral exchanges and carries out the transfer function,

 and a "transformer" IC to which the electrical wires carrying the electrical voltage are
connected as physical links.

That way, I could distinguish between a case where the transformer is used as a voltage
converter, and another case where the same transformer (IC) is used as a low-pass filter, for
example (the distinction being made by the BC).

(By the way, we could also imagine mechanisms in Capella that would assist in this creation
of ICs transparently, as is the case for ports today, created automatically as soon as an
exchange is created).

4.13 What benefits does the Physical
Architecture Representation bring?

The expressiveness of languages such as basic UML or SysML (as available by default in
COTS tools), which generally use 'Blocks' for all types of components and functions, is often
insufficient, as is the tool support. For example:

27

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 How to differentiate and represent software or firmware components from the
boards, processors, FPGAs, etc. that support them, and visualize this allocation in a
natural way? How to distinguish the same electrical transformer used as a voltage
reducer or as a low-pass filter?

 How to separately specify messages and physical, material links that carry them,
while allocating them to each other?

 How to model the routing of messages if they travel through multiple successive or
parallel links, or a complex path?

 How to visualize the functional content of components at the same time as the
architecture?

 How to represent the functional chains running through the system, and allocate
properties to them (latency, criticality...)?

 How to define the modes and states of the system? How to specify the behaviors
associated with each state or mode and what they apply to? How to show mode
changes in scenarios?

 How to separate and represent the physical data formats coherently? For example, a
position from an inertial unit via an ARINC bus, processed in software, then
transmitted to the human-machine interface in Java and on an Ethernet bus via
XDR... How to show the transport conditions of data sets?

 How to separately represent the need and solution (as is done for requirements in
SSS and SSDD/PIDS) and manage their configurations and different lifecycles?

 The same goes for interfaces, preliminary ICDs, ICDs, and IRSs...

 How to automatically generate documentation, taking these different lifecycle stages
into account?

 How to exploit models in order to articulate several levels of engineering?

 How to practically perform impact analysis on all this, especially through automatic
analysis of the model according to specialized viewpoints such as safety, RAMT,
security, etc., if we do not distinguish the different concepts to consider and
confront?

For these various points (and many others), Arcadia and Capella, while not perfect or
claiming to be exhaustive, offer proven solutions; among others:

 Separation of functional, behavioral structural, and implementation structural levels

 Explicit allocation of one on the other

28

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Separation of dataflow from functional dependencies and their uses in a given
context (via functional chains and scenarios)

 Addition of dedicated concepts for the articulation and consistency between these
different views (functional paths and physical paths, configurations and situations of
modes and states, etc.)

 Separation and articulation between data (classes), transport units (exchange items),
interfaces, exchanges, and ports

4.14 What is an Interface? How to use it?
 Interfaces in the context of Arcadia and Capella are not classes, and the two

concepts are clearly distinct:

 Classes ('Data' in Arcadia) are only used to define the data manipulated in exchanges
between functions or components. Defining a method for a class in Capella would
have no use in the model; it will never be explicitly called in exchanges between
components, but only potentially in the internal software code of the component
(outside of the Capella model).

 Interfaces structure the services and means of interaction offered by the
components:

o An interface is composed of exchange items (EI), each of these EIs defining
an elementary service (or event, data flow...) that can be provided by one or
more components and used (required) by other components.

o An interface usually has a functional or semantic coherence: for example, for
a multifunction printer, different interfaces can be used for the scanning
function, the printing function, the photocopy function, printer management,
etc. And the printing function interface will offer EIs (services) for choosing
print parameters (paper size, orientation, color or B&W), printing the
document, but also alerting in case of lack of paper or ink.

o An EI "carries" a group of data (or parameters), each of which is
characterized by its membership class and its name in the EI.

o An interface is attached to a component port and contributes to defining its
"user manual."

All of these concepts are not necessarily to be used in a given context and may - must - be
adjusted to strict needs.

29

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5 Model building hints
5.1 What are the frequent mistakes? How to

avoid them?
First, is Arcadia adapted to your scope and goals? Do you really target solution building,
architecture definition & design and engineering mastering? Or are you mainly addressing
better customer need understanding, focusing on customer side-capability operational
deployment, programmatic issues… that he wants you to address (possibly together)?

 If stakeholders need mastering is the major expectation of your work, then an
“architecture framework” based approach might fit better

 If your purpose is to explore the problem space or the solution space at high level,
for orientation or concept definition and experimentation, here again, Arcadia does
not fully address this: it will possibly enter the game later

 On the other side, if (architecture-driven) engineering is your focus, Arcadia targets
engineering and architecture design, including operational and capability-related
considerations that feed engineering – and here it is much better than architecture
frameworks for that.

Before starting, it would be useful to list main challenges and expectations of engineering,
along with building a ‘maturity map’ of the subjects that your engineering will have to face,
so as to orient modelling towards addressing low maturity subjects firstly, when and if
appropriate. Driving modelling by its major uses and challenges is key for stop criteria and
contents definition.

Some of the most frequent misunderstandings in applying the method lie in:

 Not clearly separating need (OA, SA) Vs solution (LA, PA) ; this leads to cluttering the
need description with solution considerations, so it is costly to maintain, difficult to
read and approve by the customer; it constrains the solution (because approved by
the customer) and prevents from considering other alternatives;

o Therefore, take care to capture only need elements in SA especially, and keep
it as small as possible.

 Considering that the functions describing the solution (e.g. in LA) are just a
refinement of the need functions (in SA); this is usually not the case, especially if you
reuse existing parts of the system, and might “corrupt” your SA or skew your LA ;

30

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

o So check consistency between need and solution by traceability links (e.g.
between system functions and logical functions, between functional chains
and scenarios on both sides…) but don’t try to strictly align both sides.

 Reducing the physical architecture to an allocation work of logical functions and
components to hardware implementation components; if so, then your LA will
probably be too detailed, thus costly to maintain and unnecessarily cluttered for most
users;

o Instead, consider the LA as the introductory high level description that will
help presenting and discussing on the major features and alternatives of the
architecture, sufficient to reason on major architecture design choices, but not
detailing the behavior too much, this being done in physical architecture
(where interface definition could be finalized as well).
Of course, this can be adapted to your own context, but beware the
temptation to over-detail too early.

Other typical pitfalls follow:

 Wrong level of focus on concerns and parts of the system and model: most engineers
focus on what they know, and detail this a lot, while neglecting new or low maturity
parts.

o You should of course do the other way around, in order to raise possible
problems and manage risk as early as possible.

 Addressing Reuse of existing components too early or too late: building a solution
from parts without correctly mastering the real need, or at the opposite, designing a
solution architecture from scratch, and then trying to insert existing stuff.

o To manage confrontation between existing systems contents and new
expectations, when modelling practices are established, existing contents
should be described in an initial PA, while new needs should be captured in
OA and SA; so confrontation takes place in the LA: LA describes expected new
architecture, and compares to physical existing assets; gaps are detected
between LA and PA, and the physical architecture is modified accordingly to
specify required evolutions.

 Considering the IVV issues lately, waiting for the definition of the solution to be
complete.

o Capabilities are often a good way to drive and structure IVV and delivery
strategy, while scenarios and functional chains will give you a prefiguration of
test campaigns and test suites; the model will then help you identifying the
required order of components deliveries, and test means contents, for
example. This can be useful during bid phase as well, to size IVV activities
and means, and also shape IVV strategy. Your design might also be positively

31

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

influenced by taking IVV issues into consideration early, to make capabilities
easier to verify, to split functional chains according to progressivity of
integration, etc.

 Modelling without a clear vision of the kind of engineering problems that you want to
solve with this modelling.
The criteria for stopping the modelling and its orientation, as well as the guidelines
given to each, depend on this answer. For example:

o If it is a question of justifying a development cost, a rough model is more
than enough.

o If the interfaces need to be justified, then the functional analysis and data
must be detailed, but especially between the components (or actors).

o If you need to secure the reuse of existing assets, the functional analysis
must be fine-tuned because it is in the details that reuse incompatibilities are
hidden.

o For performance analysis, it is towards the functional chains and the
superposition scenarios that we must look first, then the definition of the
processing and communication resources, with a functional detail limited to
the dimensioning.

o For IVVQ, a homogeneous definition guided by scenarios and functional
chains is required; the architecture must be broken down according to
integration constraints, dependencies between components and separation of
test chains (functions crossed by the tests).

 Regarding roles and responsibilities, just a strong warning: the risk exists that
modelling be run beside “the real engineering stuff” rather than at the heart of it; this
would result in possible mistakes in model and poor representativeness, but also in
architecture and design decisions not relying on the model, thus weaker engineering
and poor value for modelling.

o I would recommend that the architect, design authority and major authorities
in system design be fully aware of model contents, and justifying their
decisions based on it. This means not only monthly reviews, but day-to-day
validation and appropriation of the model with the modelling team – or the
architect could also be the lead modeler.

5.2 Why and how to use the Functional
Analysis?

Arcadia, based on a component-based approach to architecture construction, relies on
functional definition (dataflows + capabilities, functional chains, scenarios) to define and

32

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

justify components, their interfaces, their expectations, and especially transverse behaviors
that involve multiple components (functional chains, states, modes...).

 Components are created by grouping or segregating constrained functions

o segregation/grouping constraints can both be functional and non-functional,
but are all expressed through functional definition: safety-related feared
events & hazards, reuse, product line, etc.

 Interactions between components are automatically deduced from functional
allocation

o via associated data flows that cross component boundaries

 Refinement is applied first to the functional analysis and the exchanges, and
therefore automatically applies to components to which functions are allocated.
Justification is done through functional traceability with the previous requirement
model and requirements

o via choice of precise behavioral design for each expected function, overall
optimization between functions, etc.

 The behavior of each component is clearly defined by the scenarios that are allocated
to it, as well as the functional content that justifies and specifies its interfaces and
scenarios

 Each component is described as a full-fledged subsystem,

o with its scenarios, its interfaces,

o as well as its functional content,

o the functional chains that cross it,

o the process for obtaining the data it provides and the use of the data it
requires...

 In a product line approach, variabilities are defined on the functional level (optional
functions or functional chains, for example), and their impact on components is
visible, traceable, providing an architecture that is easier to design for the product
line.

 The overall behavior of the system is always visible, as are transverse functional
chains

o since they are based on functional definition, which remains visible and
transverse to the definition of the components.

33

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

5.3 How to define and justify Interfaces
between Components?

The basic idea of Arcadia for modeling interfaces between behavioral components is to rely
on functional definition:

 precisely describe the expected behavior using functional analysis, through functional
exchanges (FE) between functions that will be allocated to behavioral components

 group the data to be exchanged together into an exchange item (EI), which reflects
the need to exchange them in a coherent and simultaneous manner

 reference the EI in the FE(s) that carry it between functions

 describe the dynamic behavior using functional chains and scenarios using these
functions and exchanges

Once the functions are allocated to behavioral components:

 group and allocate the FE into behavioral component exchanges (CE) between
behavioral components

 do the same for functional and behavioral ports if necessary (especially to be able to
reuse a "stand-alone" component in a library, for example, without external
exchanges)

 reorganize the exchanged data and EIs on the FE, if necessary, to construct the
elements that will be exchanged between components (messages, commands,
requests, or services, etc.) and allocate them to the CE

 group and structure the EIs exchanged by the components, referencing them in
interfaces that characterize the conditions of use of the component; allocate these
interfaces to the ports of components exchanging these EIs

 describe the dynamic behavior between components using scenarios that involve the
aforementioned CE(s)

 describe the communication steps, if applicable, through mode and state machines
whose changes are mentioned in the scenarios; each machine being allocated to a
component involved in the communication

In summary, we synthesize and group the functional EIs into an interface (by simple
reference), and similarly group the FE into a CE.

Finally, when behavioral components are allocated to implementation components:

34

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 group and allocate the CE to physical links (PL) which will carry them between
implementation components

As a result, it is possible to have several EIs on a component exchange, originating from one
or several FEs. However, if we want to indicate that sometimes we exchange one part, and
sometimes another, and we want to show it in the CE, it is preferable to create several
behavioral exchanges. In this case, it may be necessary to create categories for grouping the
behavioral exchanges for documentary purposes.

Note: The software approach known as "component-based development" (CBD) favors
encapsulation; that is, we try whenever possible to use a component by only looking at it
from the outside, without having to know how it is made inside, and therefore without
having to "open the box" to connect to internal sockets.

The ports and interfaces are there to group, abstract, and provide a view of the "user
manual" of the component (at least for behavioral components); they should therefore
provide the appropriate "natural" level of detail in the component behavioral exchanges. The
detailed interactions should be seen at the functional level (via functional exchanges).

Similarly, according to the principles of CBD, we should only connect high-level components
(not sub-components) to preserve the abstraction that high-level components constitute
(being able to consider them as a black box). The ports of sub-components would therefore
only be connected to the ports of the parent component through delegation links. However,
experience shows that there may be exceptions, particularly in more physical or material
domains. In these cases, direct links between sub-components are necessary.

5.4 Should we use textual requirements or
models?

Textual requirements are, for most customers, the traditional and most used way of
specifying their needs (note that more and more customers use and require models as well).
So they cannot and should not be discarded in our process, at least as an input for our
engineering and a source of justification links towards IVV for Customer.

However, textual requirements suffer from weaknesses that may impact engineering and
product quality:

 They are possibly ambiguous, and contradictory or incoherent with each others, with
no formalized language to reduce these ambiguities

 Their relationships and dependencies are not expressed, and being implicit and
informal, they may be wrong or contradictory

 They cannot be checked or verified by digital means, in most cases

35

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 They are poorly adapted to collaborative building and reviewing, for the former
reasons

 The process of creating links to each requirement (for design, IVV, sub-contracting…)
is unclear, without a defined method; the way to verify these links is undefined; the
quality of these links proves to be poor in many cases (as discovered lately in IVV)

 Textual requirements (alone) are not adapted to describing an expected end to end
system solution (each of them only expresses a limited and focused expectation);
they are not adapted to describe a solution

 They alone can hardly be sufficient to describe subsystems need, including usage
scenarios, detailed interfaces, performances, dynamic resource consumption, and
more

 …

Models tend to solve these weaknesses, thanks to:

 Defining a formalized language, less ambiguous and shareable, digitally analyzable
to detect inconsistencies

 Bringing internal consistency thanks to the language properties and concepts (e.g.
linking functions by data dependency, making them coherent with functional chains,
allocating them to components, linking a required function to design architecture
behavior implementing it, adding non-functional (NF) requirements such as
performance or safety expectations on functional chains, etc.)

 Explicitly describing and tooling the process to build, link, analyze model elements
above

 Relating all modeled elements to each other into one global view, thus providing
means to check their coherency and consistency

 Favoring collaboration by natural, functional structure, and means to confront
different views (e.g. capabilities/ functional chains/scenarios, functions and
dataflows, data and interfaces definition, modes & states, components, and more)

 Describing need and solution separately, while providing justification and traceability
links that can be semantically checked

 Describing solution based on both functional/NF and structural descriptions,
functional/NF one justifying structural definition (interfaces, performances, resources
usage…)

 Constituting a detailed components development contract (or subsystem
specification), including all the former elements

36

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Easing IVV strategy and justification by directly feeding test campaigns with
capabilities, scenarios and functional chains, thus improving the quality and efficiency
of IVV

 ...

This leads, internally in our engineering practices, to using models as much as possible to
describe both need and solution at each level, while complementing them with textual
requirements, either to detail expectations (e.g. to describe what is intended from a leaf
function behavior), or to express requirements that are not efficiently expressible in the
model (e.g. environmental or regulation constraints).

However, it should be noted that:

 Not all requirements can be represented in the model.

 Those that can do not exempt a textual description of these elements themselves,
which becomes more expressive and flexible than the model's formalism. This
description may or may not be formalized as a 'textual requirement' object in the
traditional meaning.

 Requirements that can’t be represented in the model must still be managed,
allocated, and traced between systems and subsystems/SW/HW, AND linked to the
engineering elements on which they relate (other requirements of different levels,
tests, etc.).

But the key point is to treat these requirements according to their real usage in engineering,
and governed by the model whenever possible (for structuring, navigation, justification,
etc.).

Therefore, internally, requirements will be mostly model elements, and complementary
textual ones. Both will be related to customer requirements by traceability links, allowing
justification from test results up to customer requirements, through model elements
verification.

5.5 Which requirements can be model-based?
Requirements that can be formalized as model elements (hereafter referred to as model
requirements) include requirements of the following types:

 Functional, interfaces, performance: the most common, allocatable to elements of
architecture model, verifiable by IVV scenarios (demonstration and tests).

 Structural (SWaP (size weight & power), distribution on geographical sites, recurring
cost, number of copies, etc.): allocatable to elements of architecture model, often
verifiable by inspection.

37

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Non-functional but related to architecture (safety, security, availability, etc.):
allocatable to architecture model elements, in the expression of need (feared events,
threats, essential goods, critical functions, etc.) and solution (safety and security
barriers, redundancies, degraded modes, etc.), and verifiable by model analysis.

 Non-functional but verifiable by analysis or demonstration (simulation, formal proof,
analysis by specialty tools including safety, security, availability, etc.): allocatable to
specialized models supporting analysis or demonstration.

Requirements that can hardly be modeled are for example:

 Regulatory requirements: compliance with standards, etc. They can be transmitted to
subsystems, but most of the time verified by inspection, therefore linked to little or
no engineering assets.

 Contractual requirements: supply deadlines, maintenance duration, repair deadlines,
etc. ditto

 Environnement-related requirements : temperature range in operation or storage,
resistance to salted spray, etc. ditto

 Requirements directly allocatable to subsystems and without impact on the system:
to be dealt with at a lower engineering level

 [Requirements that are modelable by nature (performance, safety/security, etc.), but
whose current MBSE practices maturity does not yet allow to do so]: temporarily,
they can have the same uses as modelable requirements.

5.6 Why use model requirements?
There are at least three major uses for these model-based requirements, as well as
complementary associated textual requirements:

 To build a solution that takes into account User Requirements (URs). Arcadia
proposes to formalize/confront/connect them in OA/SA, and then to construct a
solution traced with respect to this formalization; thus, everything happens in the
model if they have been captured and formalized there.
Note: it is necessary to keep the possibility of directly linking model elements located
in LA and PA to these URs: to have more accurate traceability, and thus to avoid too
much detail in the SA if it was the only perspective that accounts for these URs, while
increasing the number of URs that can be modeled. This also applies to so-called
requirements which are more likely premature design elements.

 To define a Verification and Validation (V&V) process that demonstrates the
adequacy of the produced solution with these requirements.
What is actually verified is not these descriptions in the form of textual requirements,

38

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

but the satisfaction of the expected capabilities, through scenarios and functional
chains representing this need, in accordance with the entire model description
(including these textual description elements).
The Arcadia approach consists of constructing test campaigns based on the
capabilities/functional chains/scenarios, while explicitly specifying and ensuring the
link between need and solution (which is not done in the traditional approach), which
allows for checking the model elements and associated URs. Thus, we always remain
in the model, and there are model/tests links, from which we deduce the UR-Tests
links indirectly.
The justification of the solution with respect to URs is done, for model-driven
requirements, by "indirection": we check the model elements (via tests based on the
capabilities, functional chains and scenarios of the model); once these are verified,
we can verify the associated user requirements, and we can generate justification
tables, for example, UR-test results.

 To define the realization contracts of subsystems. These are constructed from the
physical architecture, and any impact and traceability analysis is also done in the
model, which is specifying (the model elements are subsystem requirements (SSR)).
If the subsystem is also in a model-driven approach, then we remain in this context,
and the SYS/SS traceability is done between SYS and SS model elements. Otherwise,
we will generate documents or even requirements exports, under the same
conditions as for the client SSS, as described above.
Note: the case of URs that can be directly allocated to subsystems and have no
impact on the system should be considered. In this case, the simplest solution is to
directly link these URs to the associated SS components in the PA.

In these three uses, I do not see any reason to "take the requirements out of the model" for
the engineering level concerned. So for me, the simplest and most productive solution is to
manage these requirements (system requirements, sub-system requirements) in the model
only, with the appropriate links to URs, which are themselves by default in the model.

This also has the merit of greatly simplifying everything related to reuse, variability in
product line, versioning, branch reporting, configuration management, feeding inputs and
models of specialty engineering, etc. (all sources of complexity that are still ahead of us...).

The essential point here is to consider and treat these requirements according to their real
use in engineering, and to govern them by the model whenever possible (for structuring,
navigation, justification...).

To summarize the global approach:

 When analyzing need (SA, maybe OA): “translating” customer/user requirements
(UR) to model elements, you link UR with SA model elements when appropriate;
these model elements constitute the system requirements, along with
complementary textual requirements if needed (linked to model as well)

39

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 When defining the solution architecture in LA and PA, you create links between LA/PA
functions and SA functions’ (and functional chains, and other SA elements). You can
consider that this brings indirect links between UR and LA PA components
(component to LA PA function, to SA function, to UR)

 In some cases, you may directly link LA PA model elements to system or user reqs, if
those reqs deal with physical considerations (eg the kind of operating system
required by the customer, or environmental conditions…); it is better in this case not
to artificially links these textual reqs to SA functions, which would create meaningless
need functions, but rather to only link them to appropriate PA objects

 PA model elements, allocated to sub-systems or components, constitute most sub-
system requirements; you can add some complementary sub-systems textual
requirements to your PA (linked to model elements),

o either to detail PA elements expectations (e.g. to describe expectations on a
physical function)

o or to “split” a system req to allocate parts of it to different subsystems

o or to add reqs associated to system design choices.

5.7 Where to link textual requirements with
the model?

Here, we mainly consider the requirements received from the client (user requirements, UR),
assuming that the main uses of the model are:

1) defining the interfaces between subsystems,
2) defining the functional expectations of each subsystem,
3) making overall design choices,
4) driving the system IVV.

 If a requirement concerns the architecture (e.g. realization technology, constraints on
a specific component...), then link it to the LA or PA, not necessarily to the SA.

 If a requirement impacts only one subsystem, it is preferable to link it only in the
subsystem model (or documents), unless it obviously impacts the system-level SA
functional analysis.

 If a requirement can be fully verified at the IVV level of a subsystem, same as above;
unless it obviously impacts the system-level SA analysis.

40

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 If deemed really necessary, these requirements can be linked not only to the
subsystem model but also allocated to the relevant component representing the
subsystem in the system model (in LA or PA, but not in SA).

 If the requirement concerns a functional analysis expectation, several cases are
possible:

o some requirements can only be expressed on a functional chain (e.g. end-to-
end latency constraint, cyber-security...), or on a scenario

o some requirements are specific to a function independently of its uses (e.g.
criticality level), or common to all its uses (explaining and detailing the
function behavior, thus detailing the function name)

o some requirements are specific to the use of a function in a given context -
capacity, functional chain, scenario, or even mode or state - (e.g. function
behavior different depending on whether the system is in manual or
automatic mode), and thus should be attached to the use of the function in
the functional chain or scenario (the "involvement" in Capella).

 If the requirement concerns data to be exchanged, or a condition of interaction
between two functions..., it would be more accurate to link it to the exchange, since
it is likely to carry the definition of the associated data, rather than to link it to the
source or destination function of the exchange (which allows in particular to find the
requirements mentioning a data by going back from it to the EI and FE that carry it
and from there to the associated requirements).

What is important is that in a finalized engineering, every requirement is allocated either to a
model element, to another engineering element (simulation, study...), or to a subsystem. It
would be useless and artificial to constrain or overload the SA to account for requirements
that do not constrain either the functional aspects or the system's interactions with the
outside world (this may be better understood with an example like "the processors used
must be octo-core Core I7 ").

5.8 Does the system appear in the operational
analysis or not?

It is important to understand the purpose of the operational analysis and when it comes into
play in engineering. The operational analysis is particularly useful when seeking to best
satisfy a client's need, without having an imposed system scope, or by seeking innovative
ways to satisfy this client's need.

The OA should not mention the system, as it aims to understand the client's need without
any assumptions about how the system will contribute to it; this is to avoid too quickly
restricting the field of possibilities (which will only be done in System Analysis, by deciding at

41

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

this level what will be requested from the system and what will remain with the operators
and external systems).

The observation is that when the system is mentioned in operational analysis, potentially
interesting alternatives in system definition are already excluded.

Let's consider this example: the client's need is to have means to hang a painting on the
wall, the trend is to formulate the need as "how to use my drill system, what to do with it".
As a result, we find the system (drill) in the operational analysis, so the game is over, no
smarter alternative is possible. Operational analysis is not very useful, as it duplicates the
role of System Analysis.

What Arcadia (and Architecture Frameworks such as NAF) suggests is to restrict Operational
Analysis to what the client and stakeholders need to do: the (operational) capacity to have a
localized fixation point in a specific location. Therefore, I am not yet talking about a drill in
the operational analysis, but I am trying to analyze the need well: should the fixation be
reversible? can the wall be damaged? should the position of the painting be adjustable? what
will be the maximum weight of the painting? what will be its size? will it have to be placed
and removed frequently? who will ensure the fixation, with what qualification?

From this Operational Analysis, Arcadia recommends a capability analysis, i.e., finding the
different possible alternatives and comparing them: here,

 a hole + dowel + drill,

 but also a self-drilling point and a hammer,

 or an adhesive hook or a contact glue…

We analyze the various solutions (compromise facilitated, price, user training...) in
subsequent candidate System need Analysis and early Architecture perspectives (SA/LA/PA),
and choose the best (best compromise). Suppose it is the drill and dowel; we can now define
the system, its system capabilities (fix a dowel) and its functions in final System Analysis
(drilling, choosing the diameter, controlling the depth...).

Revisiting the OA with each evolution of technologies can then allow us to propose new
products or solutions.

Once again, focusing on the system in Operational Analysis can bias the analysis. Two
examples (a bit caricatural):

 If the system under engineering is an execution platform (multi-processors or private
cloud, for example): if we focus the Operational Analysis on the platform, we
naturally define how each actor interacts with it - at the risk of forgetting that the
software applications hosted by the platform also communicate (first) with each
other, and that the platform has a role to play in this communication.
The approach proposed by Arcadia or the Architecture Frameworks would consist, in
Operational Analysis, of analyzing for each actor with whom and why they

42

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

communicate - and thus, the "direct" communication between applications actors
would appear. By building the System Analysis afterward, we should wonder how the
platform system can support this inter-application communication, and we would thus
reveal communication services provided by the platform - which would also allow us
to properly characterize and size the needs of applications (e.g., broadcasting,
events, microservices, etc.).

 Another example: a communication management system in an airliner: if the initial
OA had been done by integrating the system (wrongly, as you understood ;-)), it
would describe the links between the system and the actors (airlines, air traffic
control, airport, weather services, etc.), and these links would be characterized by
frequencies, protocols, etc.
In this case, when moving to the SA, the added value of the SA compared to the OA
is often not seen - rightly so. Furthermore, there are still no means to dimension the
complexity of the operator load (e.g. during final approach) or data exchanges.
The OA must therefore be done, temporarily forgetting the radio management
system and focusing on the activities of the actors (airlines, ATM, airport, etc., but
also crew) and the associated exchanges; in doing so, it highlights the nature of the
exchanges (flight plans, weather files, etc.), the flight phases in which these
exchanges occur... and the workload induced for the pilots.
When moving to the SA and introducing the communication management system, its
contribution to these exchanges is defined, which this time are dimensioned and time
related; this makes it possible to establish a profile of system performance. And one
can also see what is traditionally outside the system domain (e.g. voice
communication), and which could inspire functional enrichment of the system (e.g.
digital messaging replacing or complementing voice communication).

Another question and scenario: how to talk about maintenance in OA without taking into
account the thing being maintained?

Taking into account the thing being maintained does not mean representing it as an actor:
one can perfectly well describe, at the OA level, the maintenance processes of the system
under engineering, describing only the maintenance team activities: dismantling, bench
testing, fault localization, software and firmware updating, configuration verification, etc.
Then, in the SA, we will try to deduce the requirements on the system, by formulating
questions derived from the OA: "how should the system be designed to be easily
dismantled? What enabling systems are needed to test it, and what functionalities should
they have? What observability capabilities must the system have to assist in fault
localization? What software updating means? etc.
Some of this will translate into SA as requirements allocated to the system, and some as
required functions of the system (e.g. download, version supply, observability or alerting
reporting functions...).

5.9 Operational Analysis: Where to stop?

43

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

DO NOT include the system in the OA, as indicated above. The OA focuses on the users; the
scope and expectations of the system will be defined and analyzed in System Needs Analysis
(SA).

Set the boundaries of the coverage area: this is not easy, but otherwise you will end up
modeling the entire organization of the client or users. The question to ask is like, "will this
concern the users of my system, the systems interacting with them and with it, etc.?"

Do not forget to look for discriminators, priorities, criticality, etc., which will guide the
system's choices and compromises in the following perspectives – along with value-driven
engineering.

It is impossible and useless to formalize the whole operational material. It is sometimes
better to capture it with organized or structured text and extract from it, to populate the OA
model:

 Typical situations that will also be used for IVV, value analysis, cyber, etc.

 Illustrative cases of opportunities, constraints, or threats

 References to textual descriptions that provide all the detail and diversity of
situations.

The model is there to organize and help analyze, detail and illustrate the raw textual data,
provide a representative and synthetic view, that can be manipulated and analyzed in a
systematic way, and then be related to the rest of the analysis and definition (SA, LA PA,
simulations, IVV, etc.). But not exhaustively.

Obviously, the consequences of such an analysis can be scary, fearing an inflation in the size
of the OA model, on the one hand, and the prospect of having to translate all this into SA
afterwards. Several suggestions or recommendations in this case:

 In many of the above cases, most operational situations fall into a limited number of
generic patterns; the diversity of situations is reflected in particular expectations for
each in a given pattern, via constraints, non-functional properties, feared or expected
scenarios, on existing elements (functional chains, scenarios...), therefore not an
inflation of the elements already present.

 In other cases (as much as possible!), this will result in new needs or service
opportunities on the system (and therefore to be captured in SA, and traced with
respect to the elements of the OA that illustrate it, even if they are commented on by
appropriate requirements or constraints)

 And regarding the OA → SA transition work, I think it also needs to be managed
"economically": for example, an OA scenario representative of a situation that will
need to be confronted in the design does not necessarily need to be translated into
SA; it may suffice for future scenarios in PA illustrating the realization of the expected

44

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

capacity to reference the OA scenario and the associated services in SA, linked to
each other as indicated above.

5.10 What’s the difference between Modes and
States?

In Arcadia, Modes and States are similar in concepts and description, but bear different
meanings and uses.

 A Mode is a behavior expected of the system or a component, in some chosen
conditions.
Examples of modes for a drone: Autonomous flight, waypoint-driven path, remote-
controlled flight; Collision avoidance active or not; take-off, en route, stationary flight
(mission phases).

 A State is a behavior undergone by the system or a component, in some conditions
imposed by the environment.
Examples of states for a drone: Starting or On or Shutdown or Off; Available, or
Degraded, or Failed/out of order; Day or Night; windy or still weather.

The first important issues to address in architecture modeling for M&S, are mainly:

 Identifying system modes and states, their conditions of realization and the functional
behavior that they allow or need (e.g. functional chains)

 Identifying sources and nature of conditions for transitions

 Defining contribution of each subsystem or component to these system M&S, and
complementary “local” M&S to be supported by the component according to its
internal behavior.

 Checking that sources and contents of transitions are properly defined in interfaces
(external and between subsystems or components) , and that appropriate functions
support generating these triggers and supporting expected actions

 Checking that M&S state machines of various subsystems or components are
coherent with each other (e.g. no deadlock or starvation in triggers…) – this is still to
be tooled.

Theoretically speaking, any trigger should be produced by a well-identified function
somewhere in the system, and be carried by functional / components exchanges.

By the way, remember that Arcadia and Capella target architecture engineering, and not
detailed [software] design: if complexity of M&S raises, this might (or not) mean that they
describe detailed design rather than expected general behavior.

45

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

For a more advanced “Modes & States engineering”, Arcadia and Capella introduce new
concepts:

 A Situation is a combination of states and modes representing the conditions of
superposition of these states and modes simultaneously at a given instant.
Example of a situation: (Autonomous or remote-controlled flight) AND Collision
avoidance active AND Night AND windy AND Available.

 A Configuration is a set of System or model items that are globally available or
unavailable in a given mode or state. Each mode or state is described by an atomic
configuration.
Example of configuration: collision avoidance->available, autonomous flight -
>available, remote control link->available, localization sensor->failed

A recommended approach to verify that architecture design is valid concerning expected
behavior, taking benefit from these concepts, would be (simplified):

 Define expected configurations that should be valid in different conditions in
operation (mainly defining capabilities, functional chains or scenarios that should be
supported by the system in these contexts)

 Define typical situations, representative of what could be expected or could happen in
real operation (e.g. main kinds of component failures, main mode changes)

 Compute the global configuration resulting of superposing the different atomic
configurations brought by modes and states in each situation

 Compare this result to each expected configuration

5.11 Should operators be in the system?
Operators can be modeled outside the system (as actors) or inside the system (in which case
they are represented by components of the system*). In both cases, we can and should
distribute the required functions to support the need between the system itself and its
operators.

One criterion for differentiating the cases could be:

 If no constraint or need is expressed about operators in OA and SA (by the client in
particular), then operators are considered as internal components of the system,
some of which will be human; they will therefore only appear in the logical
architecture, since this will result from a design choice (e.g. choice of a crew concept
distributing roles to operators among several possibilities).

46

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 If roles or characteristics (such as skill, availability, responsibilities, etc.) are assigned
to operators in the expression of need, then it is preferable to make them appear
from the SA (or even the OA), as full-fledged actors.

* Capella allows a behavioral or implementation component to be characterized as human.

5.12 What similarities and differences between
System and Actors?

From the theoretical point of view, System and Actors definitions should have the same kind
of capabilities, both being built of implementation components (IC), hosting behavioral
components (BC).

Among other benefits, this allows to move BC or IC from system to actors and vice versa, for
different configurations or versions in a product line, and would ease complex transitions
from system to sub-systems and Test means; this also allows defining true roles allocated to
several actors and possibly to the system (using a Replicable element (REC) BC for role
definition and replicas (RPL) BC to allocate a role to an actor or component), which is useful
for Human-System Interfaces, or for example to manage variable delegation of service (at
some time inside the system, and at other time in an actor). It is also a means to express
that the system should use the same kind of IC as external actors (e.g. same kinds of
computers), etc.

Leaving theory to meet practice, I propose (as shown in Arcadia reference) that, for sake of
simplicity (to avoid creating unused components):

 at PA level, an actor is seen, just as an implementation component which is outside
the scope of system engineering; so the actor is linked by physical links to a set of
system ICs, and is a container of behavioral components, that will be linked to
system BC by behavioral exchanges.

 At SA and LA levels, actors are defined the same way; but the physical links are only
defined between the actor and the system itself (not with logical components,
because they are not intended to carry physical links/ports).

 shortcuts would be accepted in order to allow actors to not only host BC, but also
perform functions, along with associated ports and exchanges.

5.13 How do System and Actors interact and
share resources?

In some cases, system and actors can be intricated in a complex manner and system
boundaries not so clear, with respect to behavioral components (BC) deployment on
implementation components (IC).

47

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Let us consider 4 use cases (numbered 1 to 4):

 UC #1 is traditional: BC (in blue) hosted by IC (in red), both inside the system, and
to be integrated/delivered.

 UC #2 illustrates an external BC to be hosted inside the system (e.g. an external
software running in one of the system computers).

 UC #3 shows the opposite case where one of the system components is hosted by an
external resource (e.g. a customer-supplied processing bord and software to be
embedded in the system, or a human-system interface hosted in a multi-purpose
customer workstation).

 UC #4 is a standard external BC on an external actor IC. This one is out of our
interest.

The idea is to separate the kind of objects (Actor, BC, IC) from their qualification as internal
to the system or not (based on the definition above).

A way to address these different cases is adding a property on objects, to define their origin
and scope ('INTERNAL' or 'EXTERNAL'). This way, in PA, you could define UC #2 and UC #3
easily, while keeping them inside the system “boundary”.

In UC #3, why is ‘External computer’ IC (red), hosting ‘Internal software app #2’ BC, located
inside the system boundaries? Because it has direct and strong impact on system
architecture, hence is to be considered as part of architecture evaluation: if it is a computing
board, then depending on its power and available processing capacity, you might have to
modify hosted software contents and interfaces; it will consume electrical power and
contribute to heating and weight; it shall be part of reliability, security and cyber analyses;
etc. This also partly applies if the computer is an external workstation (e.g. it affects system
cyber-security analyses).

In UC #2, why is ‘External software app’ hosted by ‘Internal computer #2’ internal system IC
mentioned here, although not part of system delivery? For the same reasons: if it is a
software running on one of the system computers, then you have to provision enough
computing resource for it, and in case of its failure, it could shut the computer down.

48

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Furthermore, it might struggle with system own software components for board resources.
So at least you should characterize its behavior and resource need under these perspectives.
So it should be modelled as well, in a simplified form characterizing its functional interfaces
and impact on the system components. This is what is called 'footprint') here.

5.14 How to model communication
components?

Let's consider a drone system in which the onboard computer exchanges data with the
control station via any type of radio communication channel.

For example, the computer sends sensor data (position, attitude, speed, etc.) produced by a
"flight data computing" software component to the "trajectory display" component of the
control station (both behavioral components). The communication itself is ensured by a
dedicated communication board connected to the computer by an ad hoc link. In the model,
this board will implement at least one behavioral component, "data transmission".

A common mistake is to model data passing from "flight data computing" to "data
transmission", and then from "data transmission" to "trajectory display" (via exchanges
carrying position, altitude, and speed).

Indeed, from the point of view of the "flight data computing" and "trajectory display"
components, they are unaware of the communication means employed. In their software
code, each component communicates directly with the other, without intermediary.

From the point of view of the "data transmission" communication component, it should not
have knowledge of the content of each exchange it carries; otherwise, the specification of
this component would have to evolve each time a new exchange is added between
application components. Instead, it should receive generic communication service requests,
which will be sent to it by the computer's operating system, not directly by the application
components.

A much better way to model this case is to connect the application components directly to
each other, without going through the communication component. The latter, and the
communication board as a whole, remain in the model, as they are part of the architecture,
consume resources, and must be included in safety, reliability, etc. analyses, but they are
not connected to the application components. Moreover, the implementation details of the
application components on the operating system, and the integration between it and the
communication component, are irrelevant at this level of engineering modeling and should
not be included.

5.15 How to engineer and model
communication layers?

49

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

The way to model a system which includes communication layers (such as the 7 layers OSI
model) is interesting, because it emphasizes the different scopes that different engineering
teams have to deal with, and how they should articulate with each other.
Let us imagine a system in charge of supervising scattered installations on the Mars planet,
environmental constraints requiring developing a new ruggedized, specific communication
stack. Here, we consider the top level system engineering model.

 The top level system engineering team should usually:

o focus on the application-level processing and communication needs : collect
status of installations, send them to a monitoring application, delivering
appropriate human-system interfaces etc.. A major goal is specifying this need
to application software teams for example,

o also specify the underlying communication infrastructure to the
communication engineering team, by describing what kinds of
communications should be supported, with which performance and QoS
constraints (see below),

o and integrate both, mainly focusing, at its high level, on operational,
applicative scenarios and application level exchanges, the use of the
communication means being implicit and hidden (provided that
communication means had been validated separately before being integrated
with application software).

 From an application (software) component engineering point of view, the component
never has two different kinds of interfaces that cohabit: if you consider the software
code of the application component, for example, it only communicates with other
application level components, by sending messages, events, requests or so. It has no
explicit call to low level communication API for example.
So what the software application team expects as a specification, only deals with

o application level exchanges,

o and possibly the kind of service to be used for each communication exchange
(if not to be decided by software team).

Therefore, putting both application- and protocol-related interfaces on the application
components would have no meaning.

 From the communication engineering team point of view, they have no need to get
all the application level exchanges as an input, to define and build their
communication stack; what they need is:

o the different kinds of communication services, styles and paradigms that are
necessary in order to implement the expected behavior,

o expected quality of service for each service,

50

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

o some kinds of 'communication performance profiles' that will define how the
communication infrastructure will be solicited (how many services of each
kind per second, size of transported data, real-time and scheduling
constraints, and so on).

This requires enriching the description of each application level exchange (or
exchange item) in top level system engineering model, with complementary
properties (such as required communication service or paradigm), and then
synthesizing them so as to specify expected communication services.

The means to define the performance profiles is trickier, and depends a lot from the
level of detail in the system engineering model, and the details of the dynamic
behavior description. It might have to come from another separated (non Arcadia?)
model, more dedicated to performance issues.

 Furthermore, system model, application software model and communication model have
different lifecycles: adding or removing a new application exchange in the former will (and
should) not affect the latter (the communication model).

Now, a question could be raised: is there any reason to include some description of
communication subsystem in the top level system engineering model? The answer may be
'yes' if the communication infrastructure is likely to impact the system architecture definition:
for example by adding dedicated communication components, or influencing performance
analysis (communication layers might consume some resources in the system), and also to
specify to the communication engineering team the network nodes that have to be fed with
communication capabilities, and more...

In this case, both application level and communication level "sub-models" will coexist in the
same top level system engineering model, but the communication sub-model would be less
detailed: for example, you could define only communication components (because of their
need for resources), communication services functions and functional exchanges (if needed
for specification), but no protocol-related component exchange and interface. You should not
try to link both sub-models explicitly, with exchanges, for example, because of the reasons
above.

One way to express, in the top level system (application) engineering model, 'the relation
between “the required communication services in the application model” with “the provided
communication services by the communication model”', could be (among others) to

 formalize these services as functions of the communication infrastructure,

 name the ‘paradigm’ (or ‘communication service’) properties on application level
exchanges accordingly,

 and check, by means of model queries, that each application exchange is typed
according to one existing service function name.

51

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Note: this situation also applies to other fields beyond communication stacks engineering,
such as cyber engineering for example.

5.16 How to model a communication protocol?
In this meaning, a protocol describes the time-related chronology of interactions between
two (or more) entities, so as to establish the connection between them, perform various
exchanges of information, material, etc., while ensuring the appropriate quality of
communication service, and then ending the connection.

In this case, we use the following concepts of Arcadia to describe the protocol (usually
starting at functional level for most details):

 components or actors or system being the entities communicating through the
protocol,

 functions allocated to them to express processing of communication and interaction
on each side,

 functional exchanges between these functions to describe each elementary
interaction,

 data (classes) and exchange items to describe the contents of these exchanges,

 interfaces to group these exchange items, in order to define expectations on
components to support this protocol,

 but also component scenarios to illustrate the chronology of the former exchanges,
different possibilities, nominal and abnormal behavior...,

 and mode or state machines to describe conditions of evolution and steps in the
protocol; usually, one (or more) machine at protocol level, to describe the overall
logic of its progress, and one (or more) machine for each entity to express its internal
state and protocol progress from its own point of view,

 non-functional property values on these elements to describe expected quality of
service (e.g. time constraints, bandwidth, encryption...).

Arcadia also introduces protocol as a language element, and interaction roles (as described
in Arcadia reference book), but this is not yet supported by Capella. In the tool, these
elements can be grouped into a Replicable Element Collection, and/or in a library for
example, in order to be reused.

5.17 How to model the environment and
physical sensors?

52

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

When modeling a system with an atmospheric pressure sensor, for example, one often
encounters an external actor "Atmosphere", to which one tends to allocate a function
"provide pressure", which is questionable from a physical point of view and unnatural. The
question is even more difficult when it comes to identifying the component exchanges, the
ports (the surface of the sensor on one side may be, but what about the atmosphere side?),
and the physical link (the air?).

To improve the modeling a bit, I reason (as often) by separating the functional from the
structural perspective, then by analyzing the conditions of use of the modeling carried out,
including in terms of the level and scope of responsibility of the engineering.

From the functional point of view, we could very well imagine having only a detection
function allocated to the sensor, without input; this is precisely the case for simple
environmental measurements, in which permanent physical quantities are measured, without
any other interaction with the environment. For pressure or temperature, for example, that's
what I would do a priori, unless I am in charge of the engineering and model of the sensor
itself, where I might accept a function of the atmosphere producing pressure - I would then
rather name this function 'is characterized by physical quantities', for example.

But when there is a real interaction (influence of the system on the object following
detection, for example), or if the situation of the external actor evolves (e.g. entering the
field of a camera...), it is often interesting to start with the external actor equipped with a
function providing information to the sensor. In this case, I define:

 an actor function which translates its own observable behavior (entering the field,
moving; radiating in the electromagnetic spectrum...) and not the "production" of the
information that the sensor will interpret (so not 'produce an image', nor 'emit an
electromagnetic signature'...); this function is to be considered as a contribution to
the specification of what a scenario generator, for example, will have to do to
simulate the actor (generator that will move the actor...). One can also try to be
generic ('exhibit physical characteristics'...), or even not name it, because it is the
exchange that is important.

 a functional exchange, which translates the nature of the information that the sensor
will use to detect the actor (electromagnetic emission, image, or simply presence
information for a proximity sensor, distance for telemetry, landscape or view for a
camera, pressure...); this exchange also contributes to the specification of the actor-
system interaction simulator, this time by the nature of the information that this
simulator will have to provide.

For an inertial navigation system, for example, it is more complicated: one would not have
an environment function 'imposes inertia laws'; to test the system, it would be moved,
nothing would be done in the environment; so I might not even add an external actor here.
Or else, an exchange of 'relative movement', and an actor function of the type 'locates in
space'.

53

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

This function also allows in particular to build scenarios and functional chains translating the
feedback of the system on the behavior of the actor.

Note also that for qualifying the physical quantities involved and their nature, the data model
and exchange items may suffice most of the time.

From a behavioral point of view, it could be imagined to do away with behavioral
exchanges between the actor and the sensor, insofar as it will not be the responsibility of the
system to carry out this exchange, except through technological means of realization that
are not within the purview of system engineering and the Arcadia model.

This could be justified, for example, if a sensor receives multiple types of information from
the actor, such as temperature, pressure, and humidity, which would be grouped into a
single behavioral exchange, but this has no significant impact on engineering at this level, in
my opinion.

One of the justifications given for behavioral exchanges, wanting to make them appear in
scenarios, does not seem very strong to me, because a scenario will not be less
understandable if it starts from the sensor rather than the actor - but it will be simpler...

From an implementation/physical point of view, Here, I would not put any physical
link, except for exceptions of course. There is often no reality to this type of link and no
responsibility of engineering on it either; engineering will not define a physical interface with
the atmosphere, which would appear in the ICD for example, simply to have a line between
the system and an “atmosphere” actor.

In this case, it is better not to mention the external actor (the atmosphere here) outside of
the functional aspect above. Its definition is useful in the operational and system need levels,
because it can evoke constraints, choices, etc., but at the physical level, it is hardly useful
anymore.

One potential exception (but I'm not even sure about it) could be, for example, a physical
link indicating whether we use infrared or visible image acquisition as a medium for image
capture.

In summary,

 For simple sensors and measurements, no external actor, especially in [LA] PA.

 For more complex observations and interactions, only the functional aspect, whose
exchange alone carries the characteristic of the acquisition conditions.

 No behavioral exchanges or physical links, except for good reasons and
demonstration of interest for the intended uses of the model.

54

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

6 Engineering Lifecycle Considerations
6.1 In what order to carry out the modeling

activities?
For educational purpose, the elaboration of main Arcadia perspectives is presented as an
ordered sequence: Operational Analysis OA, then System Need Analysis SA, then Logical
Architecture building LA, Physical Architecture building PA, ending with Building Strategy BS.
This reflects the rationale and role of each perspective delivering useful inputs for next ones,
whose completion and quality depend strongly on the former.
Similarly, inside each perspective, engineering tasks and activities are also connected by
what should be considered as dependency links, but not necessarily time-related ordering of
steps & tasks.

In fact, while preserving these dependencies, any process or order can be used to elaborate
the definition of the architecture as governed by Arcadia:

 top-down or waterfall approach,

 bottom-up and reuse-driven approaches,

 iterative or incremental processes,

 ...

Furthermore, in real life conditions, iterations and loops are necessary between all
engineering activities, yet they are not explicitly represented in Arcadia processes for sake of
simplicity.

Consequently, although the workflow may appear to be straightforward, activities may be
carried out in a different order; however, for best quality of engineering results, each activity
should not be fully completed without having checked its outcome against its expected
entries and dependencies, for consistency.

55

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

This mainly depends on the process that you want to promote, which itself depends on the
specificities of your engineering practices.

For example, when modeling is introduced into an existing engineering process (evolutions
of an existing product, significant reuse of already developed elements), it is easier to
parallelize the construction of perspectives since the information already exists, and the
means of justifying the design are not a priority.
It is just necessary to ensure overall consistency between perspectives and viewpoints, but
the existing know-how explains how to do it, and we are rather in a bottom-up approach,
particularly to rebuild levels of abstraction and need from a detailed existing product.

Conversely, in the definition of new products or functions or architectures (or parts of them),
the construction logic is essential. Here, each perspective must be justified and checked to
ensure that it conforms to the expectations of the previous ones, and the dependencies are
strong: it is not possible to effectively define the architecture or interfaces without referring
to the functional aspects, for example. Furthermore, the verification of needs is essential,
and therefore operational analysis is essential, as well as the link with the system need
analysis.

6.2 How to iterate, from the OA to the PA, to
develop the solution?

The order in which the different Arcadia perspectives are developed is not immutable, and
each perspective may have to be reconsidered and evolve throughout the engineering

56

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

lifecycle. This is particularly true for operational analysis. An example of engineering
involving evolving operational concepts or capabilities is as follows:

 Start with an initial OA defining the current state of the client's operational processes,
organization, etc.

 Build, evaluate, and compare a set of alternative SAs, defining possible contributions
of the system under study to this OA

 Define, evaluate, and compare various solution alternatives in LA and PA

 Based on the possibilities and new opportunities offered by the chosen solutions, also
consider possible evolutions of the OA to optimize the solution and its use; for
example, changing the roles of system operators, simplifying or speeding up
operational processes through automation

 Update the SA but also, and above all, the OA, to modify, enrich, or simplify
operational processes and entities

 Optionally, draw justification links between the two origin and final OAs.

 The solution provided is therefore the set defined by all the perspectives, including
the new OA.

6.3 How to use the OA to describe the solution
lifecycle?

The OA (or several specialized or dedicated OAs) can also be used to describe the life cycle
of the system itself, including the stages of specification, design, deployment, operations,
maintenance and support, evolution, retirement, etc., if necessary, particularly in cases
where engineering is involved beyond the delivery of the solution: cyber-security, autonomy,
use of learning or big data analytics, for example.

In this case, stakeholders (operational entities, actors: designers, maintainers, etc.) can be
added, who have activities (design, IVV testing, analysis of operation data, updating cyber
protections, algorithm evolution, etc.), operational processes, information or other needs,
successive phases which can be translated into modes, etc. Then, the system can be
considered as an object of these activities (which does not mean describing it, which is not
recommended in OA!).

Next, in the following perspectives, elements of the system architecture can be related to
this description through justification links: for example, a link between a calibration function
and the tuning process that requires it at production time, integrated stimulation tools
intended for troubleshooting, packaging for transportation, etc.

57

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

At the same time, this operational view can also accommodate the description of successive
versions and configurations that will need to be delivered to the customer for their
"capability roadmap", in the form of user capabilities to be provided over time...

6.4 How to confront an existing system with a
new need?

When a product or system exists and a new need arises, it is necessary to verify if the
existing product can meet the need, and to determine what changes it must undergo.
Arcadia proposes an approach based on the proper use of each perspective:

 Capture the operational need and the expectations of the new client in a dedicated
Operational Analysis (OA) and System need Analysis (SA).

 Compare these two perspectives with those that have been defined for the existing
product; identify the differences in order to focus the subsequent analysis on them.

 Sketch a principle or notional architecture of the solution adapted to the new need in
a dedicated Logical Architecture (LA).

 Compare this LA with that of the existing product; possibly modify it to bring it closer
to the existing product; identify the differences in order to focus the subsequent
analysis on them.

 Then, compare this LA with the Physical Architecture (PA) of the existing product to
analyze the impact of the required changes on it; create a dedicated PA, derived from
that of the existing product, on which these changes will be applied.

 Update the OA, SA, and LA accordingly if necessary.

The above confrontation can be done either at the level of a complete model or only in the
context of reusing an existing element. In this case, this reusable item (RI) is supposed to be
described in a library, as a model element (e.g., for a component, its ports, interfaces, or
data, its functional content, its implementation or test scenarios, its non-functional properties
such as performance or capabilities, etc.).

At least the following consistencies must be verified:

 Definition of interfaces or exchange items (consistent between RI and the elements
related to it).

 Definition of manipulated data.

 Exchanges required by RI and exchanges actually available in the architecture (if an
input port of RI is not fed by an exchange, there may be a problem).

 Functional content, implementation scenarios for dynamic behavior definition.

58

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 Consistency of non-functional properties (through multi-point view analysis):
performance, consumed resources, domain of application, security, safety,
compatibility with system modes and states, etc.

In terms of concrete implementation in the model, several strategies are possible, for
instance:

 The RI is directly inserted into the model and connected to its environment; in this
case, the verification will probably be done with respect to the functional need, by
establishing/verifying the proper traceability links, and then by performing multi-
viewpoint analysis.

 Architecture vision is made without inserting RI, and then above consistency is
verified with the elements it should replace; here, consistency can be checked
directly, maintaining the distinction and marking the modified/reused parts.

6.5 When to stop the design of one level?
Modeling often reveals (but does not cause) ambiguities in the distribution of roles and
responsibilities in engineering. These ambiguities are often responsible for teamwork
troubles that affect the effectiveness of engineering and the quality of the final product.
Clear decisions must be made to avoid such potential problems.

The architects of an engineering level are responsible for engineering choices and decisions,
which are translated into information entered into their model, including:

 The allocation of functions to components

 Performance

 Interfaces

 …

This level of engineering is also responsible for the integration/verification of the components
it defines and the behaviors it has specified.

It is therefore necessary to ensure a clear boundary between two engineering levels and to
specify who is responsible for what, particularly regarding breakdown into components and
interface definition.

 If the high-level system engineering (or product engineering PE) cannot finalize the
inter-component definition, then it should delegate it rather than impose a
breakdown into components; it therefore only transmits functional needs to the
hardware or software engineering level (HE/SE), possibly indicating its "preferences"
in terms of grouping by first-level functions and associated requirements (for
example, specifying needs for modularity, observability, etc.).

59

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Note that delegation does not mean having no right to review and appropriation: the
PE can validate the design and use the HE/SE models if necessary, for example, for
document generation, etc.

 If the PE chooses to define and therefore impose the inter-component architecture,
then they must assume their definition and integration to the end: guarantee the
allocation of functions to components (i.e., performance, safety, security, weight,
consumption, feasibility – case of an FPGA, for example), freeze the interfaces to
their finest level of detail for the HE/SE level, specify the expected dynamic behavior
in detail of the interactions between components… so that it is not called into
question later; they must also ensure the integration of what they have defined, i.e.
integrate the components with each other.

o In the normal and recommended process, the PE individually outsources the
elementary components (leaf components) they define in their physical
architecture. Each component description in the PE's physical architecture
therefore initializes a system analysis (SA) in the HE/SE model for the
hardware or software component, with its environment being represented by
external actors.

o However, there may be different cases: for software or firmware, for
example, even if the PE outsources a single leaf component individually, they
must sometimes specify the implementation component(s) on which this
component will run, for example (ex middleware+operating system+CPU
board). This can only be transmitted to the HE/SE at their physical
architecture level, since this is where the implementation components appear.

o Furthermore, and even if it is not recommended, one could imagine a
scenario in which the PE wants to define the component breakdown (but then
completely, as explained above) but entrusts to the HE/SE all tasks
concerning configuration management, production management, unit tests,
etc. In this case, the model transmitted by the PE to the HE/SE includes
several (behavioral and/or implementation) components; these realization
constraints will then be transmitted at the physical architecture level of the
HE/SE.
In this case, since the component breakdown is finalized, it can and should be
transmitted to the physical architecture of the HE/SE without any issues (in a
multi-level transition from PE model to HE/SE models). This part of the PA
model will be read-only; the HE/SE will specify the functions actually
performed (still in PA) on these components, refine them, but not challenge
their interfaces (except by going back to the PE level of course). The
functional need arising from the PE will be transmitted to the SA level (need)
of the HE/SE; it will then be necessary, in order to account for the allocation
planned by the PE, for example, to create first-level functions grouping those
allocated to the same component, in the SA of the HE/SE, and to impose
corresponding requirements on them as well as on the components.
Note that having responsibility does not mean choosing and designing

60

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

everything alone: the PE can define the components with the HE and SE if
necessary.

6.6 How to collaborate between System and
Sub-systems teams?

Arcadia recommends that system engineering team and sub-systems, software and
hardware teams work in a collaborative manner, in co-engineering, to elaborate the
architecture of the solution.

The place where this co-engineering should take place is the system engineering Physical
Architecture. This architecture is defined collaboratively, under responsibility of the system
architect, then it is the basis for sub-systems, SW and HW development or acquisition
contracts (through automatic transition/generation of sub-systems need analysis SA models,
extracted from system PA).

If a modification is to be applied (evolution of customer need, or adjustment of system
architecture, or even modification requested by a subsystem team), recommendation is to
manage it in the system-level physical architecture, in a collaborative, co-engineering
manner (involving system and subsystems teams stakeholders).

Then a new subsystem SA is to be generated accordingly. This subsystem SA is to be
considered as read-only by subsystem engineering team; the SS team work is then to
confront this new SS need evolution, with the current state of SS architecture design, and
make it evolve accordingly.

To summarize, the collaboration workflow may sometimes be bottom-up (e.g. evolution
requested by subsystem team, or reuse suggestion), but the model workflow should only be
top-down (from system PA model towards subsystem SA model).

6.7 Can we merge two engineering levels in the
same model?

There is no fundamental opposition to a model reflecting several levels of engineering, but
there are several conditions for this to work, and experience shows that it can be very risky
and generally not recommended. Essential conditions to reduce the risks of such operation
would be:

 Truly integrated team responsible for only one level of engineering in the eyes of the
client, quality, organization (and agreement of the hierarchy on this point)

61

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

o to avoid the difficulty of managing a technical contract between the two
levels, the difficulty of formalizing/verifying it

 System and software (or subsystem) scopes close to each other: substantially
equivalent functional contents between the two levels, not too many components
other than software, simple execution platform viewed from the system...

o to limit the number of stakeholders in the model with too different concerns
and modeling and stopping criteria;

o to avoid too heterogeneous levels of modeling details that will make scenario
and functional chains definition complex, evolution costly,

o to reduce the complexity of intertwined lifecycle/configuration management,

o to reduce multi-user constraints, model and diagram size...

 Only one level of documentation, for example (even if there can be an additional
level of detail: e.g., SSS, SSDD, software SDD)

o to avoid complicating the document generation and easily allocate model
elements to documents and simplify the document configuration management

 Only one level of IVV, even if it can be progressive,

o to avoid having to systematically go down to the finest level of detail required
by the software to define test procedures, scenarios, and associated FCs;

o to avoid forcing system IVV teams to go down to the software level to
conduct the IVV strategy and locate problems

Note: the few elements I give here are not to be taken literally; they depend on the context
and are not exhaustive either.

At a minimum, if we wanted to have truly distinct two levels of engineering in the same
model, while separating them (let's say to fix ideas a system or product engineering level
and a software engineering level),

 OA/SA/LA would then need to be the responsibility of Systems Engineer – but with
only the level of detail required for IS product choices;

 The LA would be both the description of the System engineer solution but also the
need of software engineer, and only that need;

 While the PA would be the responsibility of software engineering, translating the
software solution (at the first level).

But if the previous conditions are not met, we can clearly see the problem: systems
engineers need to go all the way down to the physical description for the platform and other
subsystems without being polluted by the software detail... And the software has no reason

62

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

to be disturbed by an interface evolving between two subsystems outside its scope - and yet
they are in the same model...

Furthermore, I fully understand the need for co-engineering and also the need for systems
engineers to access the details of software engineering design if necessary, to better
understand, verify, etc. But this does not mean one single model: simply, the models at each
level must be developed together, lead to a consensus, and be accessible and navigable by
each level of engineering.

6.8 How to manage the transition from System
to Software?

The system-software transition takes place at the architecture level, not at the software
design level.

The decomposition into components as defined in the system PA (preferably in co-
engineering jointly between systems and software engineering) must be respected by the
SW, even if it means going through a negotiation process again. Therefore, it must be
transmitted in one way or another to the software architecture, just like the data model, as it
describes the external interfaces that must be respected. This transition from the system to
the software can generally be automated, for example, by code generation (definition of
interfaces, containers/components/microservices, assembly and deployment of services or
components, etc.).

For the functional part, on the other hand, it cannot be as direct: this functional part
expresses the expected need (in the same way as textual requirements), to which the
detailed design and software code responds in its own way. Such a function can be found
distributed in N methods of P classes, cut into pieces due to threading, use of libraries or
reused components, etc.

Therefore, for the functional part, one must just try to trace it if possible in the code or
detailed design, in order to refer to it in the definition of versioning, testing, allocation of
technical facts, etc. But, in the general case, this traceability is necessarily manual.

Of course, if software engineering chooses to use Arcadia for software architecture design,
then the continuity will be total, including for the functional content.

6.9 Can we use Arcadia to work on Software?
Regarding the use of Capella (and therefore Arcadia), it has always been said that it is not
intended to be a software design tool: it will not replace either the code or a possible
modeling tool such as UML, Matlab, or other, aimed at the almost complete generation of the
code itself.

However, there is a need for software architecture engineering on many software
developments (especially constrained ones) before embarking on design and code. The

63

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

absence of such reasoned, justified, and ideally formalized architecture is a proven weakness
in several domains.

In many cases, the use of UML can be adapted to this formalization. However, if the major
constraints of the architecture require an analysis in viewpoints, and/or if the criteria for
defining and choosing this architecture are based on functionality (which is also more
frequent than one might think), then Arcadia and Capella are natural candidates.

There are many cases of software architectures defined with Capella. Again, this does not
mean software development or even software code design itself (which are outside the
scope of Arcadia).

6.10 What kind of document can be produced
from the models?

Arcadia favors model-driven engineering and focuses on formalized assets rather than on
documents. Outputs of each Arcadia perspective are pieces of models (Operational Analysis,
System Need Analysis, Logical and Physical Architectures, sub-systems contracts, building
strategy, etc.). The models are the reference, and internally, engineering teams only use
them.

However, for various reasons, such as customer requests, certification processes, sub-
contractor or customer interactions, traditional documents can be extracted and generated
from these models. Typically:

 Operational Concepts documents (OCD) are built from Operational Analysis (for the
CONOPS part), and from System Need Analysis (for CONOPS, CONUSE and CONEMP)
contents; they may be complemented by physical architecture elements if needed

 System/Segment Specifications (SSS) and Interface Requirement Specification (IRS)
documents are built from System Need Analysis

 System/Segment Design Documents (SSDD) and Interface Control Documents (ICD)
are built from Logical Architecture (preliminary documents) and Physical Architecture
(final documents)

 Sub-systems SSS/IRS, Software Requirement Specifications (SRS) and Hardware
Requirement Specifications (HRS) and IRS/ICD are built from System Physical
Architecture contents, filtered and restricted to the SS/SW/HW component context

 Test plans, IVV strategy and more are also generated from the models, but are out of
scope here.

64

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

6.11 How to use models to communicate with
the client?

Delivering an engineering model as-is to a client has always proved counterproductive, both
due to an excess of information that hinders the client's analysis and due to a lack of
adaptation to the client's usage.

Here are some recommendations to facilitate the client's appropriation of the model, if this
mode of communication has been chosen with them.

 The model must be reviewed beforehand by the engineering team from the
perspective of supplying it to a client.

 The non-confidentiality of the information provided must be validated by
management; if necessary, the model must be filtered from what should not be
disclosed.

 The status of the model must be recorded in written form with the client: it must not
be contractual in any case, and you should be able to change it at any time, etc.

 A reading guide must be developed, with conventions, reading order, etc. (at least in
the form of the documentation field of the overview in Capella, which also serves as
the entry point for the html version of the model).

 The diagrams presented to the client must be simple, expressive, commented,
contextualized; above all, do not use construction diagrams, working diagrams... that
are not intelligible to them. The rule should be: no more in a diagram than what you
would put on a ppt slide (so zoom in once or twice, then forbid yourself from scrolling
the diagram...).

 Training for the client's readers, in both the method and the tool, is almost
imperative and must absolutely be offered to them (they are free to refuse).

 The readers must be accompanied in their discovery of the model by someone from
the engineering team who knows the model well.

6.12 Model-based Testing (MBT)?
The principle of MBT adopted here is to build a model of the system's use (or the solution)
as expected by users and clients (we could also speak of a model of usage, of the system's
interaction with its environment), while making as few assumptions as possible about the
design of the solution itself, in order to remain in the world of needs (with a focus on
verification and validation, or even qualification).

65

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

The aim is therefore to build a formalized model of the expected behaviors of the system
based solely on the specifications (in theory), and then to generate (preferably
automatically) test patterns to which the real system will be subjected.

In the case of Arcadia, the method involves building mission-driving scenarios for the
system, independently of the system itself, from an operational analysis (OA) perspective.

These scenarios are then translated into system interaction needs from a system analysis
(SA) perspective. These scenarios are natural candidates for initializing test conditions for
verification/validation - thus for initializing the test model that will feed the MBT.

However, an aspect often overlooked in MBT approaches is that in order to concretely
generate finalized test scenarios (and even more so for automatic generation), it is
necessary not only to formalize the expected conditions of use of the system as described in
the specifications (OA SA), but also to link them - or even "translate" them - into interactions
of the system with its environment as designed by the engineering (and not just as
specified), otherwise automatic generation is not possible: real external interfaces,
sequencing of the dialogue with external systems and operators (which are a product of the
design and development of the solution system), etc.

This "translation" or realization of test scenarios is carried out in the test construction
approach recommended by Arcadia as follows:

 By translating the specifications (and/or operational analysis) into capabilities,
illustrated by functional chains and scenarios described in SA,

 Then by building the solution in LA PA, and transforming the scenarios (and
functional chains) from SA to express them in LA PA (with appropriate traceability
and justification links).

If we wanted to carry out a complete MBT approach, then for the rest of the approach, the
most economical approach would probably be to:

 start with these capabilities, scenarios, and functional chains to initialize an
executable model (possibly in a tool dedicated to this use of MBT),

 use this tool to add exploration of the test space (values, abnormal conditions,
sequential conditions, etc.), and generate executable scripts on test means. Though,
depending on the formalism used by MBT tools, the transition is more or less easy to
achieve and often requires some manual user input.

In the current state of the tools, this second part is done manually by building test
campaigns and cases based on the previous capabilities in the model, while maintaining the
associated traceability.

66

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

67

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

7 Arcadia comparing to other approaches
7.1 Arcadia Vs Architecture Frameworks?
Architecture Frameworks (AF) were initially mainly issued for customer-oriented concerns:
DoDAF or NAF (and TOGAF to some extent) were expected to:

 Help defining the way to acquire and deploy new operational capabilities (including
time-related issues, programmatic constraints, staffing…).

 Demonstrate to the customer that their operational needs were clearly understood by
the bidding supplier(s), and that their solution would functionally meet these
expectations.

See US DoDAF : To enable “the development of architectures to facilitate the ability of
Department of Defense (DoD) managers at all levels to make key decisions more effectively
through organized information sharing across the Department, Joint Capability Areas (JCAs),
Mission, Component, and Program boundaries.”

The answer to these expectations is (or should be!) globally described eg in terms of
Doctrine, Organization, Training, Materiel, Leadership and education, Personnel, Facilities
and Interoperability (US DoD DOTMLPFI). As you can see, the solution (system) is only a
limited part of these concerns, mainly in ‘Material’.

This is extremely useful to shape customer organization and means, and for the supplier to
master customer need and the way its solution should fit in, mainly in a top-down approach.
But of course, it is not so much adapted to describing the solution architecture itself in
details, and even less to support solution detailed architecture design and justification, along
with system engineering structuring.

Can Arcadia be used instead of Architecture frameworks to meet their objectives? No. In
contrast with them, Arcadia (as a method) targets structuring, guiding and supporting
System, software, hardware [architecture] engineering.

It deals notably with architecture definition, justification, integration and validation, thus
from a supplier point of view.

It is much more adapted to this, thanks to unique features such as:

 adaptation to multiple industrial lifecycles: top-down, bottom-up, middle-out,
incremental, iterative, legacy reuse or brand new…,

 clear separation and justification of solution vs need,

 strong coherency by design thanks to modelling language and rules,

68

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 support of co-engineering between specialties (safety, security, performance, product
line…) and architect,

 support to co-engineering and articulation between multiple levels of engineering
(system, sub-systems, hardware and software…)and with integration verification
validation teams,

 check and justification of architecture definition by means of multi-viewpoints
analysis,

 detailed description of final ‘as designed’ architecture: interface definition &
justification, performance allocation, IVV strategies & releases…

However, Arcadia has included concepts from Architecture Frameworks in its own language:
eg operational entities, activities, operational processes, system components, functions… and
some views compatible with them: eg OV2, OV4, OV5, OV6, OV7; SOV; SV1, SV2, SV4, SV5,
SV10…

This has been done for several reasons:

 to drive architecture justification against operational need

 to initialize system need description starting from Architecture Frameworks, and
ensure easy coupling with models supporting AF as an input

 to encourage people not used to operational need analysis, to consider this activity,
even if they are not using Architecture Frameworks, thus having a simple but limited
means to justify their architecture from operational need description

 to deliver to customer familiar with AF, description of Arcadia models and analyses
outputs under a formalism close to AF views.

So if you have a significant work to be done in ‘architecting’ phase, with your customer (or
substituting to him), then you should consider using Architecture Frameworks, then reusing
these models in Arcadia and Capella as [requirement] inputs for system engineering (to
design, develop, integrate and verify the solution). Traceability and justification links should
be maintained between AF models and Arcadia models accordingly.

If you have limited freedom of action in architecting phase or in customer analysis, then you
should at least fill Arcadia Operational Analysis (OA) and System Need Analysis (SA) phases,
even if you cannot perform an extensive architecting analysis using AF.

7.2 Arcadia and ISO 15288-2015?
I made a (maybe too?) quick analysis of 15288, to see the points of intersection with
Arcadia.

69

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

Obviously, Arcadia only covers a small part of each process, being focused on engineering.
But when I note the elements presented in the standard that I also find in Arcadia as
concerns and recommendations, I still find quite a lot of things (which is good news) .

Being well aware that we are talking about a very partial coverage, I find the following
elements:

 Business & mission analysis :

o The Arcadia OA contributes to it to some extent, I think - still from the
engineering perspective only, I won't repeat it ;-) - on the stakeholder/activity
analysis, required operational capabilities, and also "Operational concepts
include high-level operational modes or states, operational scenarios,
potential use cases," for example.

A beginning of SA or even LA would be possible in B&M Analysis if an organic
projection, for example, was needed (different sites, etc.), but most often it
will be limited to a multi-criteria or causal analysis (e.g. CID causal influence
diagrams), for an initial exploration of the solution space.

By the way, in Arcadia, the OA does not position itself on system capabilities
and interaction with the system but before: the system should not appear in
the OA. The approach seems to be fully in line with the 15288 presentation.

 Stakeholder needs and requirements definition :

o This is the first part of the Arcadia SA perspective, analysis of the system
need in customer requirements analysis and associated negotiation. It is
centered on the system, "express the intended interaction the system will
have with its operational environment," seen from the customer. A reference
to the OA (traceability with that of the B&M analysis, or even a new dedicated
OA, e.g., to translate part of the CONOPS CONEMP CONUSE) could be
justified.

 System requirements definition :

o This is the second part of the Arcadia SA perspective, which finalizes the
system need from the customer need and derives system requirements.

 Architecture definition :

o Here, a small clarification is needed: for me, this activity is done in continuity
(which does not mean that there is no break in the nature of the description,
detail, what constitutes it ...) - it starts from very broad, unformalized,
unstructured, imprecise, and undetailed considerations but "generative" (of
ideas, alternatives ...), and will bring out possibilities of solutions, initially only
evocative of its possible orientations, then increasingly precise in details
details as the field of possibilities narrows down.

70

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

I am well aware that Arcadia only covers the end of this cycle (if there is an
end), and moreover, not over the entire scope, far from it. It still helps, from
experience, to raise engineering and architectural questions, to consider
alternatives, and to make evaluation and choice criteria concrete; but again,
this is only on a part of this reflection. So for me, it clearly contributes, but
within these limits, to this architecture definition activity.

o The LA, and to some extent also the PA, that carry this contribution.

 Design definition :

o This is the actual domain of the Arcadia PA, more precisely the use of this PA
to build component or subsystem contracts and the IVV strategy.

 System analysis :

o I see it as transverse to all the others, it is an activity of "verification" or
evaluation ("assessment") on what has been developed up to a certain point.
For engineering, this concerns both the verification of understanding,
coherence, completeness of the need, the validity of the solution with respect
to it, the validity of that same solution with respect to various points of view,
the validity of the integration strategy or tests, etc., and also the comparison
of the merits of architectures.

So Arcadia's contribution is probably in the multi-viewpoint analysis and
impact analysis in general.

Note :

In the reality of a complex project, all of this needs to be put into perspective in terms of
roles and responsibilities: business & mission analysis will often be done under the auspices
of the client, using architecture frameworks, for example (or via OA SA Arcadia at worst in a
preliminary version oriented towards clients, if it is the supplier who does it and wants to
preserve the continuity of the modeling). The stakeholders' needs could be partly constituted
by the associated solution views (MSV, NSOV more or less), or a preliminary Arcadia SA. The
system need analysis would either be the same final SA or another SA traced with respect to
the first.

7.3 Why did Thales embark on the
development of a new method and tool?

Before conceiving Arcadia and developing the associated modeling tool, Capella, Thales
deployed operational approaches based on NAF/DoDAF and SysML-based commercial tools,
without success.

71

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

In these projects, the feedback revealed numerous shortcomings or incapabilities of both
Architeture Frameworks- and SysML-based approaches and tools available in the market in
defining the solution architecture.

Why not using Architecture frameworks?

Could "Architecture Framework" languages (such as the NATO AF (NAF)) and supporting
modeling tools, be used for system and architecture engineering? What does Arcadia bring
as compared to them?

As demonstrated by experience of real projects, architecture frameworks are not so well
adapted to describing the architecture of the solution itself in detail, let alone designing the
solution architecture and providing detailed justification, driving IVV, product line and more.
For example:

 There is no separation between need and solution (equivalent to the SSS / SSDD
separation).

 The consideration of engineering specialties and non-functional aspects is not
natively integrated.

 The articulation of different levels of engineering and support for IVV are missing.

 The control of the size and complexity of the model is limited.

 Moreover, there is currently no precise method supporting this approach targeting
the engineering domain, since it was not originally intended for it.

In contrast to this final customer need, Arcadia (as a tool-based method) aims to define and
verify system, software, and hardware architectures, as well as associated testing means.

This method is based on the Capella modeling tool, which takes into account the complexity
constraints of current projects.

Arcadia deals with architecture definition, its justification in relation to needs and constraints,
particularly non-functional and industrial ones, integration, and validation, from the supplier's
point of view ("design, develop, integrate, and verify the solution").
It is much more suited to the overall design of the system, thanks to unique features such
as:

 Adaptation to several industrial lifecycles:

o Top-down for new systems

o Bottom-up for existing reuse

o Composite (middle-out) for model evolutions

o Incremental and iterative

72

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

o Product line...

 Support for cooperation between engineering specialties (security, safety,
performance, product policy...) and the architect

 Support for co-engineering and articulation between several levels of engineering
(systems, subsystems, hardware, and software...)

 Control and justification of the architecture through analysis from multiple viewpoints

 Detailed description of the finalized architecture: definition and justification of
interfaces up to generation, resource allocation, and performance, IVV strategies and
optimization...

However, Arcadia still integrates some concepts from architecture frameworks, such as
operational entities, activities, operational processes, system components, functions, and
some views (OV, SV) compatible with them.

Why not using SysML, then?

Regarding SysML, weaknesses raised by projects were notably:

 In terms of modeling approach:

o No operational analysis (thus no reference to missions, contexts, ops
constraints, etc.)

o No traceability and compatibility with architecture frameworks (NAF & co)

o Functional analysis is often not core part of the approach

o No clear and justified definition/management of interfaces, of implementation

o Limited behavioral and non-functional description (no functional chains, no
supervision/states-and-modes engineering)

o No support for product line construction, system/subsystem transition, IVVQ

o …

 In terms of language, inheriting the complexity and limitations of UML: for example,

o Complexity of concepts and their articulation (no unified and minimal
metamodel for the connectivity between concepts)

o Inadequacy for non-top-down approaches (not based on hierarchical
decomposition), thus difficult to manage Reuse, collaborative definition, model
evolution

o Difficulties in scaling large models (no multi-level synthesis capabilities)

73

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

o Class/type-based approach (unnatural for system engineers) rather than
replicable instances (closer to practice)

o …

Of course, some of these limitations are also present in the tools (particularly the ability to
manage complex models collaboratively and the complexity of architecture diagrams). Most
of these limitations are still present in current tools.

Moreover, most of these approaches and tools provided little assistance in managing the
complexity of engineering as a whole, in particular:

 Collaborative model-building approach

 Management of large models (several thousand to tens of thousands of main
elements), their maintenance and evolution

 Different intertwined lifecycles in the same project

 And above all, support for engineering in all its end-to-end global processes, not just
the capture of the system definition.

This is why Thales decided in 2007 to invest (significantly and for an extended period!) in
the development of a tooled method, with the objectives of:

 Guiding each major engineering activity by framing the work with a detailed method

 Covering all phases of engineering (from operational analysis to IVV)

 Supporting and facilitating collaboration between disciplines (architects, requirement
analysts, specialty engineering, IVV, detailed interfaces...)

 Ensuring continuity and consistency throughout the depth of engineering (from the
complete system to software and hardware architectures)

 Adapting to most real-life lifecycles (new, reuse, legacy, product, bottom-up,
evolution, incremental...)

7.4 Summary: What is Arcadia’s value-added
compared to existing modeling languages
and tools?

Here is a quick summary of Arcadia features and benefits developed in the former Questions
and Answers.

74

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

 More than just a language or environment for describing a system, Arcadia is a
method supporting collaboration between stakeholders in “end-to-end” engineering.

o Covering the entire engineering cycle, from "Business/Mission Analysis"
technical Process up to Verification & Validation Technical Process (ISO
15288)

o Implementing multiple and intertwined engineering levels (system/sub-
system, specialties & disciplines)

o Supporting various engineering approaches (Reuse, Bottom/Up approach,
collaborative, Product Baseline…)

o On board support & practice recommendations helping system engineers in
the unfolding of their activities

 The Arcadia language aims at supporting engineering and the collaboration between
its actors, focusing on their needs

o Language adapted to system engineering & architecture definition

o Considered as simple and natural by system engineering stakeholders

o Close to SYSMLV2 core concepts(under definition)

o Covering from Operational Analysis up to Product Breakdown Structure (PBS)

o Ensuring consistency by construction between all sets of data (interfaces,
Modes & States, Configurations, Functional, Resources,…)

o Adapted to model complexity, collaboration, and various model lifecycles

o NAF standard formalism compatible (to some extent)

 Arcadia's operational analysis (like NAF-type architecture frameworks) is not limited
to the system environment: it is a view with a different level of abstraction that does
not presuppose the limits of the system, but only deals with missions, goals,
objectives, issues, activities... of future users of the system and their environment.
This view is essential to better control customer needs, to emerge new concepts, and
to analyze human factors, for example (otherwise, the operator's task analysis and
the operator/system allocation issue are omitted).
The view of the system environment also exists in Arcadia, but in SA.

 Arcadia explicitly separates the expression of the need (constituted by OA and SA)
and the description of the solution (LA PA); this is quite natural (as is done by
separating SSS and SSDD, for example) and allows in particular existing solutions to

75

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

be compared with a new need, which is otherwise not possible, and to manage
different lifecycles of needs and solutions, and different visibilities.

 Arcadia manages complexity using various abstraction views that separate levels of
complexity and detail, while allowing impact analysis. For example, the logical
architecture LA allows both a higher-level view of the solution, independence from
technological choices, and a place for reconciliation between existing (reuse) and
desired architecture. Similarly, functional and organic (or structural) views coexist
without mixing at each level of abstraction, including for interface justification
(structural) by the functional view. The articulation and separation of engineering
levels by models deduced from each other preserves the lifecycles specific to each
level, confines complexity while ensuring support for collaboration and overall
coherence.

 Arcadia's physical architecture allows for precise and complete definition/justification
of interfaces, crucial in engineering: in particular, for example, it distinguishes
between interactions (flows, energy, data, couples...) and vehicles of these
interactions (pipes, conductors, data links, axes of rotation...). It is also the functional
view that defines and justifies the interfaces - hence the importance of being able to
describe it at different levels (need, notional solution, final solution).

 To fully take advantage of the previous possibilities, dedicated tooling for
implementing the method is essential; this is the purpose of Capella:

o Assisting in engineering MBSE set up and in applying Arcadia.

o Easy to start up, concepts & diagramming easily understandable by system
engineering community.

o Large Tooling scope to master model complexity & diagrams & various
lifecycles.

o Industrial & Academic References (Rolls Royce, Framatome, Virgin Hyperloop,
Continental, Ariane group, Safran, Bombardier, COMAC…) in several countries
(Europe, China, India, Japan, Brazil, USA, Canada…).

o Open Source Product, free for local license, moderate costs for team license
(SME company).

o THALES and others able to provide operational support, including training

In general, Arcadia favors an approach that assists and secures end-to-end engineering,
unifying engineering practices, products, and collaboration conditions, rather than a smaller

76

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part, or disclosed to a third party without the prior written
consent of THALES.
 © 2023 THALES All rights reserved

common denominator type of language/tool that does not ensure success in collaboration
and leaves it up to each individual to build their approach.

